![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climinf3 | Structured version Visualization version GIF version |
Description: A convergent, non-increasing sequence, converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
climinf3.1 | ⊢ Ⅎ𝑘𝜑 |
climinf3.2 | ⊢ Ⅎ𝑘𝐹 |
climinf3.3 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climinf3.4 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climinf3.5 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
climinf3.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) |
climinf3.7 | ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) |
Ref | Expression |
---|---|
climinf3 | ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climinf3.1 | . 2 ⊢ Ⅎ𝑘𝜑 | |
2 | climinf3.2 | . 2 ⊢ Ⅎ𝑘𝐹 | |
3 | climinf3.4 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | climinf3.3 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
5 | climinf3.5 | . 2 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
6 | climinf3.6 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) | |
7 | climinf3.7 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) | |
8 | 5 | ffvelrnda 6399 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
9 | 8 | recnd 10106 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
10 | 1, 9 | ralrimia 39629 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) |
11 | 2, 3 | climbddf 40237 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) |
12 | 4, 7, 10, 11 | syl3anc 1366 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) |
13 | renegcl 10382 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → -𝑥 ∈ ℝ) | |
14 | 13 | ad2antlr 763 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) → -𝑥 ∈ ℝ) |
15 | nfv 1883 | . . . . . . . . 9 ⊢ Ⅎ𝑘 𝑥 ∈ ℝ | |
16 | 1, 15 | nfan 1868 | . . . . . . . 8 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑥 ∈ ℝ) |
17 | nfra1 2970 | . . . . . . . 8 ⊢ Ⅎ𝑘∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥 | |
18 | 16, 17 | nfan 1868 | . . . . . . 7 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) |
19 | simpll 805 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) ∧ 𝑘 ∈ 𝑍) → (𝜑 ∧ 𝑥 ∈ ℝ)) | |
20 | simpr 476 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) | |
21 | rspa 2959 | . . . . . . . . . 10 ⊢ ((∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥 ∧ 𝑘 ∈ 𝑍) → (abs‘(𝐹‘𝑘)) ≤ 𝑥) | |
22 | 21 | adantll 750 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) ∧ 𝑘 ∈ 𝑍) → (abs‘(𝐹‘𝑘)) ≤ 𝑥) |
23 | simpr 476 | . . . . . . . . . . 11 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ (abs‘(𝐹‘𝑘)) ≤ 𝑥) → (abs‘(𝐹‘𝑘)) ≤ 𝑥) | |
24 | 8 | ad4ant13 1315 | . . . . . . . . . . . 12 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ (abs‘(𝐹‘𝑘)) ≤ 𝑥) → (𝐹‘𝑘) ∈ ℝ) |
25 | simpllr 815 | . . . . . . . . . . . 12 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ (abs‘(𝐹‘𝑘)) ≤ 𝑥) → 𝑥 ∈ ℝ) | |
26 | 24, 25 | absled 14213 | . . . . . . . . . . 11 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ (abs‘(𝐹‘𝑘)) ≤ 𝑥) → ((abs‘(𝐹‘𝑘)) ≤ 𝑥 ↔ (-𝑥 ≤ (𝐹‘𝑘) ∧ (𝐹‘𝑘) ≤ 𝑥))) |
27 | 23, 26 | mpbid 222 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ (abs‘(𝐹‘𝑘)) ≤ 𝑥) → (-𝑥 ≤ (𝐹‘𝑘) ∧ (𝐹‘𝑘) ≤ 𝑥)) |
28 | 27 | simpld 474 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ (abs‘(𝐹‘𝑘)) ≤ 𝑥) → -𝑥 ≤ (𝐹‘𝑘)) |
29 | 19, 20, 22, 28 | syl21anc 1365 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) ∧ 𝑘 ∈ 𝑍) → -𝑥 ≤ (𝐹‘𝑘)) |
30 | 29 | ex 449 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) → (𝑘 ∈ 𝑍 → -𝑥 ≤ (𝐹‘𝑘))) |
31 | 18, 30 | ralrimi 2986 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) → ∀𝑘 ∈ 𝑍 -𝑥 ≤ (𝐹‘𝑘)) |
32 | breq1 4688 | . . . . . . . 8 ⊢ (𝑦 = -𝑥 → (𝑦 ≤ (𝐹‘𝑘) ↔ -𝑥 ≤ (𝐹‘𝑘))) | |
33 | 32 | ralbidv 3015 | . . . . . . 7 ⊢ (𝑦 = -𝑥 → (∀𝑘 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑘) ↔ ∀𝑘 ∈ 𝑍 -𝑥 ≤ (𝐹‘𝑘))) |
34 | 33 | rspcev 3340 | . . . . . 6 ⊢ ((-𝑥 ∈ ℝ ∧ ∀𝑘 ∈ 𝑍 -𝑥 ≤ (𝐹‘𝑘)) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑘)) |
35 | 14, 31, 34 | syl2anc 694 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑘)) |
36 | 35 | ex 449 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥 → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑘))) |
37 | 36 | rexlimdva 3060 | . . 3 ⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥 → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑘))) |
38 | 12, 37 | mpd 15 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑘)) |
39 | 1, 2, 3, 4, 5, 6, 38 | climinf2 40257 | 1 ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 Ⅎwnf 1748 ∈ wcel 2030 Ⅎwnfc 2780 ∀wral 2941 ∃wrex 2942 class class class wbr 4685 dom cdm 5143 ran crn 5144 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 infcinf 8388 ℂcc 9972 ℝcr 9973 1c1 9975 + caddc 9977 ℝ*cxr 10111 < clt 10112 ≤ cle 10113 -cneg 10305 ℤcz 11415 ℤ≥cuz 11725 abscabs 14018 ⇝ cli 14259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-sup 8389 df-inf 8390 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 df-z 11416 df-uz 11726 df-rp 11871 df-fz 12365 df-seq 12842 df-exp 12901 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-clim 14263 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |