Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climinf3 Structured version   Visualization version   GIF version

Theorem climinf3 40266
 Description: A convergent, non-increasing sequence, converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
climinf3.1 𝑘𝜑
climinf3.2 𝑘𝐹
climinf3.3 (𝜑𝑀 ∈ ℤ)
climinf3.4 𝑍 = (ℤ𝑀)
climinf3.5 (𝜑𝐹:𝑍⟶ℝ)
climinf3.6 ((𝜑𝑘𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
climinf3.7 (𝜑𝐹 ∈ dom ⇝ )
Assertion
Ref Expression
climinf3 (𝜑𝐹 ⇝ inf(ran 𝐹, ℝ*, < ))
Distinct variable groups:   𝑘,𝑀   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐹(𝑘)

Proof of Theorem climinf3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climinf3.1 . 2 𝑘𝜑
2 climinf3.2 . 2 𝑘𝐹
3 climinf3.4 . 2 𝑍 = (ℤ𝑀)
4 climinf3.3 . 2 (𝜑𝑀 ∈ ℤ)
5 climinf3.5 . 2 (𝜑𝐹:𝑍⟶ℝ)
6 climinf3.6 . 2 ((𝜑𝑘𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
7 climinf3.7 . . . 4 (𝜑𝐹 ∈ dom ⇝ )
85ffvelrnda 6399 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
98recnd 10106 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
101, 9ralrimia 39629 . . . 4 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
112, 3climbddf 40237 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥)
124, 7, 10, 11syl3anc 1366 . . 3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥)
13 renegcl 10382 . . . . . . 7 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
1413ad2antlr 763 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥) → -𝑥 ∈ ℝ)
15 nfv 1883 . . . . . . . . 9 𝑘 𝑥 ∈ ℝ
161, 15nfan 1868 . . . . . . . 8 𝑘(𝜑𝑥 ∈ ℝ)
17 nfra1 2970 . . . . . . . 8 𝑘𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥
1816, 17nfan 1868 . . . . . . 7 𝑘((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥)
19 simpll 805 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥) ∧ 𝑘𝑍) → (𝜑𝑥 ∈ ℝ))
20 simpr 476 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥) ∧ 𝑘𝑍) → 𝑘𝑍)
21 rspa 2959 . . . . . . . . . 10 ((∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥𝑘𝑍) → (abs‘(𝐹𝑘)) ≤ 𝑥)
2221adantll 750 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥) ∧ 𝑘𝑍) → (abs‘(𝐹𝑘)) ≤ 𝑥)
23 simpr 476 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ (abs‘(𝐹𝑘)) ≤ 𝑥) → (abs‘(𝐹𝑘)) ≤ 𝑥)
248ad4ant13 1315 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ (abs‘(𝐹𝑘)) ≤ 𝑥) → (𝐹𝑘) ∈ ℝ)
25 simpllr 815 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ (abs‘(𝐹𝑘)) ≤ 𝑥) → 𝑥 ∈ ℝ)
2624, 25absled 14213 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ (abs‘(𝐹𝑘)) ≤ 𝑥) → ((abs‘(𝐹𝑘)) ≤ 𝑥 ↔ (-𝑥 ≤ (𝐹𝑘) ∧ (𝐹𝑘) ≤ 𝑥)))
2723, 26mpbid 222 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ (abs‘(𝐹𝑘)) ≤ 𝑥) → (-𝑥 ≤ (𝐹𝑘) ∧ (𝐹𝑘) ≤ 𝑥))
2827simpld 474 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ (abs‘(𝐹𝑘)) ≤ 𝑥) → -𝑥 ≤ (𝐹𝑘))
2919, 20, 22, 28syl21anc 1365 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥) ∧ 𝑘𝑍) → -𝑥 ≤ (𝐹𝑘))
3029ex 449 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥) → (𝑘𝑍 → -𝑥 ≤ (𝐹𝑘)))
3118, 30ralrimi 2986 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥) → ∀𝑘𝑍 -𝑥 ≤ (𝐹𝑘))
32 breq1 4688 . . . . . . . 8 (𝑦 = -𝑥 → (𝑦 ≤ (𝐹𝑘) ↔ -𝑥 ≤ (𝐹𝑘)))
3332ralbidv 3015 . . . . . . 7 (𝑦 = -𝑥 → (∀𝑘𝑍 𝑦 ≤ (𝐹𝑘) ↔ ∀𝑘𝑍 -𝑥 ≤ (𝐹𝑘)))
3433rspcev 3340 . . . . . 6 ((-𝑥 ∈ ℝ ∧ ∀𝑘𝑍 -𝑥 ≤ (𝐹𝑘)) → ∃𝑦 ∈ ℝ ∀𝑘𝑍 𝑦 ≤ (𝐹𝑘))
3514, 31, 34syl2anc 694 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥) → ∃𝑦 ∈ ℝ ∀𝑘𝑍 𝑦 ≤ (𝐹𝑘))
3635ex 449 . . . 4 ((𝜑𝑥 ∈ ℝ) → (∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥 → ∃𝑦 ∈ ℝ ∀𝑘𝑍 𝑦 ≤ (𝐹𝑘)))
3736rexlimdva 3060 . . 3 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥 → ∃𝑦 ∈ ℝ ∀𝑘𝑍 𝑦 ≤ (𝐹𝑘)))
3812, 37mpd 15 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑘𝑍 𝑦 ≤ (𝐹𝑘))
391, 2, 3, 4, 5, 6, 38climinf2 40257 1 (𝜑𝐹 ⇝ inf(ran 𝐹, ℝ*, < ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1523  Ⅎwnf 1748   ∈ wcel 2030  Ⅎwnfc 2780  ∀wral 2941  ∃wrex 2942   class class class wbr 4685  dom cdm 5143  ran crn 5144  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690  infcinf 8388  ℂcc 9972  ℝcr 9973  1c1 9975   + caddc 9977  ℝ*cxr 10111   < clt 10112   ≤ cle 10113  -cneg 10305  ℤcz 11415  ℤ≥cuz 11725  abscabs 14018   ⇝ cli 14259 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator