MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climi Structured version   Visualization version   GIF version

Theorem climi 14449
Description: Convergence of a sequence of complex numbers. (Contributed by NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climi.1 𝑍 = (ℤ𝑀)
climi.2 (𝜑𝑀 ∈ ℤ)
climi.3 (𝜑𝐶 ∈ ℝ+)
climi.4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
climi.5 (𝜑𝐹𝐴)
Assertion
Ref Expression
climi (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝐶))
Distinct variable groups:   𝑗,𝑘,𝐴   𝐶,𝑗,𝑘   𝑗,𝐹,𝑘   𝜑,𝑗,𝑘   𝑗,𝑍,𝑘   𝑗,𝑀
Allowed substitution hints:   𝐵(𝑗,𝑘)   𝑀(𝑘)

Proof of Theorem climi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq2 4791 . . . 4 (𝑥 = 𝐶 → ((abs‘(𝐵𝐴)) < 𝑥 ↔ (abs‘(𝐵𝐴)) < 𝐶))
21anbi2d 614 . . 3 (𝑥 = 𝐶 → ((𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥) ↔ (𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝐶)))
32rexralbidv 3206 . 2 (𝑥 = 𝐶 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝐶)))
4 climi.5 . . . 4 (𝜑𝐹𝐴)
5 climi.1 . . . . 5 𝑍 = (ℤ𝑀)
6 climi.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
7 climrel 14431 . . . . . . 7 Rel ⇝
87brrelexi 5297 . . . . . 6 (𝐹𝐴𝐹 ∈ V)
94, 8syl 17 . . . . 5 (𝜑𝐹 ∈ V)
10 climi.4 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
115, 6, 9, 10clim2 14443 . . . 4 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥))))
124, 11mpbid 222 . . 3 (𝜑 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)))
1312simprd 483 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥))
14 climi.3 . 2 (𝜑𝐶 ∈ ℝ+)
153, 13, 14rspcdva 3466 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  wral 3061  wrex 3062  Vcvv 3351   class class class wbr 4787  cfv 6030  (class class class)co 6796  cc 10140   < clt 10280  cmin 10472  cz 11584  cuz 11893  +crp 12035  abscabs 14182  cli 14423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-pre-lttri 10216  ax-pre-lttrn 10217
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-po 5171  df-so 5172  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-ov 6799  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-neg 10475  df-z 11585  df-uz 11894  df-clim 14427
This theorem is referenced by:  climi2  14450  climi0  14451  climuni  14491  2clim  14511  climcau  14609  caucvgb  14618  stoweidlem7  40738
  Copyright terms: Public domain W3C validator