Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climf Structured version   Visualization version   GIF version

Theorem climf 40375
Description: Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴. Similar to clim 14444, but without the disjoint var constraint 𝐹𝑘. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
climf.nf 𝑘𝐹
climf.f (𝜑𝐹𝑉)
climf.fv ((𝜑𝑘 ∈ ℤ) → (𝐹𝑘) = 𝐵)
Assertion
Ref Expression
climf (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥))))
Distinct variable groups:   𝐴,𝑗,𝑘,𝑥   𝑗,𝐹,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑗,𝑘)   𝐹(𝑘)   𝑉(𝑥,𝑗,𝑘)

Proof of Theorem climf
Dummy variables 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climrel 14442 . . . . 5 Rel ⇝
21brrelex2i 5316 . . . 4 (𝐹𝐴𝐴 ∈ V)
32a1i 11 . . 3 (𝜑 → (𝐹𝐴𝐴 ∈ V))
4 elex 3352 . . . . 5 (𝐴 ∈ ℂ → 𝐴 ∈ V)
54adantr 472 . . . 4 ((𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)) → 𝐴 ∈ V)
65a1i 11 . . 3 (𝜑 → ((𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)) → 𝐴 ∈ V))
7 climf.f . . . 4 (𝜑𝐹𝑉)
8 simpr 479 . . . . . . . 8 ((𝑓 = 𝐹𝑦 = 𝐴) → 𝑦 = 𝐴)
98eleq1d 2824 . . . . . . 7 ((𝑓 = 𝐹𝑦 = 𝐴) → (𝑦 ∈ ℂ ↔ 𝐴 ∈ ℂ))
10 nfv 1992 . . . . . . . 8 𝑥(𝑓 = 𝐹𝑦 = 𝐴)
11 climf.nf . . . . . . . . . . . 12 𝑘𝐹
1211nfeq2 2918 . . . . . . . . . . 11 𝑘 𝑓 = 𝐹
13 nfv 1992 . . . . . . . . . . 11 𝑘 𝑦 = 𝐴
1412, 13nfan 1977 . . . . . . . . . 10 𝑘(𝑓 = 𝐹𝑦 = 𝐴)
15 fveq1 6352 . . . . . . . . . . . . 13 (𝑓 = 𝐹 → (𝑓𝑘) = (𝐹𝑘))
1615adantr 472 . . . . . . . . . . . 12 ((𝑓 = 𝐹𝑦 = 𝐴) → (𝑓𝑘) = (𝐹𝑘))
1716eleq1d 2824 . . . . . . . . . . 11 ((𝑓 = 𝐹𝑦 = 𝐴) → ((𝑓𝑘) ∈ ℂ ↔ (𝐹𝑘) ∈ ℂ))
18 oveq12 6823 . . . . . . . . . . . . . 14 (((𝑓𝑘) = (𝐹𝑘) ∧ 𝑦 = 𝐴) → ((𝑓𝑘) − 𝑦) = ((𝐹𝑘) − 𝐴))
1915, 18sylan 489 . . . . . . . . . . . . 13 ((𝑓 = 𝐹𝑦 = 𝐴) → ((𝑓𝑘) − 𝑦) = ((𝐹𝑘) − 𝐴))
2019fveq2d 6357 . . . . . . . . . . . 12 ((𝑓 = 𝐹𝑦 = 𝐴) → (abs‘((𝑓𝑘) − 𝑦)) = (abs‘((𝐹𝑘) − 𝐴)))
2120breq1d 4814 . . . . . . . . . . 11 ((𝑓 = 𝐹𝑦 = 𝐴) → ((abs‘((𝑓𝑘) − 𝑦)) < 𝑥 ↔ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
2217, 21anbi12d 749 . . . . . . . . . 10 ((𝑓 = 𝐹𝑦 = 𝐴) → (((𝑓𝑘) ∈ ℂ ∧ (abs‘((𝑓𝑘) − 𝑦)) < 𝑥) ↔ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
2314, 22ralbid 3121 . . . . . . . . 9 ((𝑓 = 𝐹𝑦 = 𝐴) → (∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘) ∈ ℂ ∧ (abs‘((𝑓𝑘) − 𝑦)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
2423rexbidv 3190 . . . . . . . 8 ((𝑓 = 𝐹𝑦 = 𝐴) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘) ∈ ℂ ∧ (abs‘((𝑓𝑘) − 𝑦)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
2510, 24ralbid 3121 . . . . . . 7 ((𝑓 = 𝐹𝑦 = 𝐴) → (∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘) ∈ ℂ ∧ (abs‘((𝑓𝑘) − 𝑦)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
269, 25anbi12d 749 . . . . . 6 ((𝑓 = 𝐹𝑦 = 𝐴) → ((𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘) ∈ ℂ ∧ (abs‘((𝑓𝑘) − 𝑦)) < 𝑥)) ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))))
27 df-clim 14438 . . . . . 6 ⇝ = {⟨𝑓, 𝑦⟩ ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘) ∈ ℂ ∧ (abs‘((𝑓𝑘) − 𝑦)) < 𝑥))}
2826, 27brabga 5139 . . . . 5 ((𝐹𝑉𝐴 ∈ V) → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))))
2928ex 449 . . . 4 (𝐹𝑉 → (𝐴 ∈ V → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))))
307, 29syl 17 . . 3 (𝜑 → (𝐴 ∈ V → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))))
313, 6, 30pm5.21ndd 368 . 2 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))))
32 eluzelz 11909 . . . . . . 7 (𝑘 ∈ (ℤ𝑗) → 𝑘 ∈ ℤ)
33 climf.fv . . . . . . . . 9 ((𝜑𝑘 ∈ ℤ) → (𝐹𝑘) = 𝐵)
3433eleq1d 2824 . . . . . . . 8 ((𝜑𝑘 ∈ ℤ) → ((𝐹𝑘) ∈ ℂ ↔ 𝐵 ∈ ℂ))
3533oveq1d 6829 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℤ) → ((𝐹𝑘) − 𝐴) = (𝐵𝐴))
3635fveq2d 6357 . . . . . . . . 9 ((𝜑𝑘 ∈ ℤ) → (abs‘((𝐹𝑘) − 𝐴)) = (abs‘(𝐵𝐴)))
3736breq1d 4814 . . . . . . . 8 ((𝜑𝑘 ∈ ℤ) → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑥 ↔ (abs‘(𝐵𝐴)) < 𝑥))
3834, 37anbi12d 749 . . . . . . 7 ((𝜑𝑘 ∈ ℤ) → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ (𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)))
3932, 38sylan2 492 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ (𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)))
4039ralbidva 3123 . . . . 5 (𝜑 → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)))
4140rexbidv 3190 . . . 4 (𝜑 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)))
4241ralbidv 3124 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)))
4342anbi2d 742 . 2 (𝜑 → ((𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)) ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥))))
4431, 43bitrd 268 1 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wnfc 2889  wral 3050  wrex 3051  Vcvv 3340   class class class wbr 4804  cfv 6049  (class class class)co 6814  cc 10146   < clt 10286  cmin 10478  cz 11589  cuz 11899  +crp 12045  abscabs 14193  cli 14434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-cnex 10204  ax-resscn 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-fv 6057  df-ov 6817  df-neg 10481  df-z 11590  df-uz 11900  df-clim 14438
This theorem is referenced by:  clim2f  40389
  Copyright terms: Public domain W3C validator