Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climexp Structured version   Visualization version   GIF version

Theorem climexp 40155
Description: The limit of natural powers, is the natural power of the limit. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climexp.1 𝑘𝜑
climexp.2 𝑘𝐹
climexp.3 𝑘𝐻
climexp.4 𝑍 = (ℤ𝑀)
climexp.5 (𝜑𝑀 ∈ ℤ)
climexp.6 (𝜑𝐹:𝑍⟶ℂ)
climexp.7 (𝜑𝐹𝐴)
climexp.8 (𝜑𝑁 ∈ ℕ0)
climexp.9 (𝜑𝐻𝑉)
climexp.10 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘)↑𝑁))
Assertion
Ref Expression
climexp (𝜑𝐻 ⇝ (𝐴𝑁))
Distinct variable groups:   𝑘,𝑁   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐹(𝑘)   𝐻(𝑘)   𝑀(𝑘)   𝑉(𝑘)

Proof of Theorem climexp
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climexp.4 . . . 4 𝑍 = (ℤ𝑀)
2 climexp.5 . . . 4 (𝜑𝑀 ∈ ℤ)
3 climexp.8 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
4 eqid 2651 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
54expcn 22722 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
63, 5syl 17 . . . . 5 (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
74cncfcn1 22760 . . . . 5 (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
86, 7syl6eleqr 2741 . . . 4 (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ (ℂ–cn→ℂ))
9 climexp.6 . . . 4 (𝜑𝐹:𝑍⟶ℂ)
10 climexp.7 . . . 4 (𝜑𝐹𝐴)
11 climcl 14274 . . . . 5 (𝐹𝐴𝐴 ∈ ℂ)
1210, 11syl 17 . . . 4 (𝜑𝐴 ∈ ℂ)
131, 2, 8, 9, 10, 12climcncf 22750 . . 3 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∘ 𝐹) ⇝ ((𝑥 ∈ ℂ ↦ (𝑥𝑁))‘𝐴))
14 eqidd 2652 . . . 4 (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥𝑁)) = (𝑥 ∈ ℂ ↦ (𝑥𝑁)))
15 simpr 476 . . . . 5 ((𝜑𝑥 = 𝐴) → 𝑥 = 𝐴)
1615oveq1d 6705 . . . 4 ((𝜑𝑥 = 𝐴) → (𝑥𝑁) = (𝐴𝑁))
1712, 3expcld 13048 . . . 4 (𝜑 → (𝐴𝑁) ∈ ℂ)
1814, 16, 12, 17fvmptd 6327 . . 3 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥𝑁))‘𝐴) = (𝐴𝑁))
1913, 18breqtrd 4711 . 2 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∘ 𝐹) ⇝ (𝐴𝑁))
20 climexp.9 . . 3 (𝜑𝐻𝑉)
21 cnex 10055 . . . . 5 ℂ ∈ V
2221mptex 6527 . . . 4 (𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ V
23 fvex 6239 . . . . . 6 (ℤ𝑀) ∈ V
241, 23eqeltri 2726 . . . . 5 𝑍 ∈ V
25 fex 6530 . . . . 5 ((𝐹:𝑍⟶ℂ ∧ 𝑍 ∈ V) → 𝐹 ∈ V)
269, 24, 25sylancl 695 . . . 4 (𝜑𝐹 ∈ V)
27 coexg 7159 . . . 4 (((𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ V ∧ 𝐹 ∈ V) → ((𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∘ 𝐹) ∈ V)
2822, 26, 27sylancr 696 . . 3 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∘ 𝐹) ∈ V)
29 eqidd 2652 . . . . 5 ((𝜑𝑗𝑍) → (𝑥 ∈ ℂ ↦ (𝑥𝑁)) = (𝑥 ∈ ℂ ↦ (𝑥𝑁)))
30 simpr 476 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑥 = (𝐹𝑗)) → 𝑥 = (𝐹𝑗))
3130oveq1d 6705 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑥 = (𝐹𝑗)) → (𝑥𝑁) = ((𝐹𝑗)↑𝑁))
329ffvelrnda 6399 . . . . 5 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℂ)
333adantr 480 . . . . . 6 ((𝜑𝑗𝑍) → 𝑁 ∈ ℕ0)
3432, 33expcld 13048 . . . . 5 ((𝜑𝑗𝑍) → ((𝐹𝑗)↑𝑁) ∈ ℂ)
3529, 31, 32, 34fvmptd 6327 . . . 4 ((𝜑𝑗𝑍) → ((𝑥 ∈ ℂ ↦ (𝑥𝑁))‘(𝐹𝑗)) = ((𝐹𝑗)↑𝑁))
36 fvco3 6314 . . . . 5 ((𝐹:𝑍⟶ℂ ∧ 𝑗𝑍) → (((𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∘ 𝐹)‘𝑗) = ((𝑥 ∈ ℂ ↦ (𝑥𝑁))‘(𝐹𝑗)))
379, 36sylan 487 . . . 4 ((𝜑𝑗𝑍) → (((𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∘ 𝐹)‘𝑗) = ((𝑥 ∈ ℂ ↦ (𝑥𝑁))‘(𝐹𝑗)))
38 climexp.1 . . . . . . 7 𝑘𝜑
39 nfv 1883 . . . . . . 7 𝑘 𝑗𝑍
4038, 39nfan 1868 . . . . . 6 𝑘(𝜑𝑗𝑍)
41 climexp.3 . . . . . . . 8 𝑘𝐻
42 nfcv 2793 . . . . . . . 8 𝑘𝑗
4341, 42nffv 6236 . . . . . . 7 𝑘(𝐻𝑗)
44 climexp.2 . . . . . . . . 9 𝑘𝐹
4544, 42nffv 6236 . . . . . . . 8 𝑘(𝐹𝑗)
46 nfcv 2793 . . . . . . . 8 𝑘
47 nfcv 2793 . . . . . . . 8 𝑘𝑁
4845, 46, 47nfov 6716 . . . . . . 7 𝑘((𝐹𝑗)↑𝑁)
4943, 48nfeq 2805 . . . . . 6 𝑘(𝐻𝑗) = ((𝐹𝑗)↑𝑁)
5040, 49nfim 1865 . . . . 5 𝑘((𝜑𝑗𝑍) → (𝐻𝑗) = ((𝐹𝑗)↑𝑁))
51 eleq1 2718 . . . . . . 7 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
5251anbi2d 740 . . . . . 6 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
53 fveq2 6229 . . . . . . 7 (𝑘 = 𝑗 → (𝐻𝑘) = (𝐻𝑗))
54 fveq2 6229 . . . . . . . 8 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
5554oveq1d 6705 . . . . . . 7 (𝑘 = 𝑗 → ((𝐹𝑘)↑𝑁) = ((𝐹𝑗)↑𝑁))
5653, 55eqeq12d 2666 . . . . . 6 (𝑘 = 𝑗 → ((𝐻𝑘) = ((𝐹𝑘)↑𝑁) ↔ (𝐻𝑗) = ((𝐹𝑗)↑𝑁)))
5752, 56imbi12d 333 . . . . 5 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘)↑𝑁)) ↔ ((𝜑𝑗𝑍) → (𝐻𝑗) = ((𝐹𝑗)↑𝑁))))
58 climexp.10 . . . . 5 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘)↑𝑁))
5950, 57, 58chvar 2298 . . . 4 ((𝜑𝑗𝑍) → (𝐻𝑗) = ((𝐹𝑗)↑𝑁))
6035, 37, 593eqtr4rd 2696 . . 3 ((𝜑𝑗𝑍) → (𝐻𝑗) = (((𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∘ 𝐹)‘𝑗))
611, 20, 28, 2, 60climeq 14342 . 2 (𝜑 → (𝐻 ⇝ (𝐴𝑁) ↔ ((𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∘ 𝐹) ⇝ (𝐴𝑁)))
6219, 61mpbird 247 1 (𝜑𝐻 ⇝ (𝐴𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wnf 1748  wcel 2030  wnfc 2780  Vcvv 3231   class class class wbr 4685  cmpt 4762  ccom 5147  wf 5922  cfv 5926  (class class class)co 6690  cc 9972  0cn0 11330  cz 11415  cuz 11725  cexp 12900  cli 14259  TopOpenctopn 16129  fldccnfld 19794   Cn ccn 21076  cnccncf 22726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-icc 12220  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cn 21079  df-cnp 21080  df-tx 21413  df-hmeo 21606  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728
This theorem is referenced by:  stirlinglem8  40616
  Copyright terms: Public domain W3C validator