![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climexp | Structured version Visualization version GIF version |
Description: The limit of natural powers, is the natural power of the limit. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
climexp.1 | ⊢ Ⅎ𝑘𝜑 |
climexp.2 | ⊢ Ⅎ𝑘𝐹 |
climexp.3 | ⊢ Ⅎ𝑘𝐻 |
climexp.4 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climexp.5 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climexp.6 | ⊢ (𝜑 → 𝐹:𝑍⟶ℂ) |
climexp.7 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
climexp.8 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
climexp.9 | ⊢ (𝜑 → 𝐻 ∈ 𝑉) |
climexp.10 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘)↑𝑁)) |
Ref | Expression |
---|---|
climexp | ⊢ (𝜑 → 𝐻 ⇝ (𝐴↑𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climexp.4 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climexp.5 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | climexp.8 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
4 | eqid 2651 | . . . . . . 7 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
5 | 4 | expcn 22722 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
6 | 3, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
7 | 4 | cncfcn1 22760 | . . . . 5 ⊢ (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)) |
8 | 6, 7 | syl6eleqr 2741 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (ℂ–cn→ℂ)) |
9 | climexp.6 | . . . 4 ⊢ (𝜑 → 𝐹:𝑍⟶ℂ) | |
10 | climexp.7 | . . . 4 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
11 | climcl 14274 | . . . . 5 ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
13 | 1, 2, 8, 9, 10, 12 | climcncf 22750 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹) ⇝ ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘𝐴)) |
14 | eqidd 2652 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) = (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) | |
15 | simpr 476 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝑥 = 𝐴) | |
16 | 15 | oveq1d 6705 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝑥↑𝑁) = (𝐴↑𝑁)) |
17 | 12, 3 | expcld 13048 | . . . 4 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℂ) |
18 | 14, 16, 12, 17 | fvmptd 6327 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘𝐴) = (𝐴↑𝑁)) |
19 | 13, 18 | breqtrd 4711 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹) ⇝ (𝐴↑𝑁)) |
20 | climexp.9 | . . 3 ⊢ (𝜑 → 𝐻 ∈ 𝑉) | |
21 | cnex 10055 | . . . . 5 ⊢ ℂ ∈ V | |
22 | 21 | mptex 6527 | . . . 4 ⊢ (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ V |
23 | fvex 6239 | . . . . . 6 ⊢ (ℤ≥‘𝑀) ∈ V | |
24 | 1, 23 | eqeltri 2726 | . . . . 5 ⊢ 𝑍 ∈ V |
25 | fex 6530 | . . . . 5 ⊢ ((𝐹:𝑍⟶ℂ ∧ 𝑍 ∈ V) → 𝐹 ∈ V) | |
26 | 9, 24, 25 | sylancl 695 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ V) |
27 | coexg 7159 | . . . 4 ⊢ (((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ V ∧ 𝐹 ∈ V) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹) ∈ V) | |
28 | 22, 26, 27 | sylancr 696 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹) ∈ V) |
29 | eqidd 2652 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) = (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) | |
30 | simpr 476 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑥 = (𝐹‘𝑗)) → 𝑥 = (𝐹‘𝑗)) | |
31 | 30 | oveq1d 6705 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑥 = (𝐹‘𝑗)) → (𝑥↑𝑁) = ((𝐹‘𝑗)↑𝑁)) |
32 | 9 | ffvelrnda 6399 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℂ) |
33 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑁 ∈ ℕ0) |
34 | 32, 33 | expcld 13048 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝐹‘𝑗)↑𝑁) ∈ ℂ) |
35 | 29, 31, 32, 34 | fvmptd 6327 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘(𝐹‘𝑗)) = ((𝐹‘𝑗)↑𝑁)) |
36 | fvco3 6314 | . . . . 5 ⊢ ((𝐹:𝑍⟶ℂ ∧ 𝑗 ∈ 𝑍) → (((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹)‘𝑗) = ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘(𝐹‘𝑗))) | |
37 | 9, 36 | sylan 487 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹)‘𝑗) = ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘(𝐹‘𝑗))) |
38 | climexp.1 | . . . . . . 7 ⊢ Ⅎ𝑘𝜑 | |
39 | nfv 1883 | . . . . . . 7 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑍 | |
40 | 38, 39 | nfan 1868 | . . . . . 6 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
41 | climexp.3 | . . . . . . . 8 ⊢ Ⅎ𝑘𝐻 | |
42 | nfcv 2793 | . . . . . . . 8 ⊢ Ⅎ𝑘𝑗 | |
43 | 41, 42 | nffv 6236 | . . . . . . 7 ⊢ Ⅎ𝑘(𝐻‘𝑗) |
44 | climexp.2 | . . . . . . . . 9 ⊢ Ⅎ𝑘𝐹 | |
45 | 44, 42 | nffv 6236 | . . . . . . . 8 ⊢ Ⅎ𝑘(𝐹‘𝑗) |
46 | nfcv 2793 | . . . . . . . 8 ⊢ Ⅎ𝑘↑ | |
47 | nfcv 2793 | . . . . . . . 8 ⊢ Ⅎ𝑘𝑁 | |
48 | 45, 46, 47 | nfov 6716 | . . . . . . 7 ⊢ Ⅎ𝑘((𝐹‘𝑗)↑𝑁) |
49 | 43, 48 | nfeq 2805 | . . . . . 6 ⊢ Ⅎ𝑘(𝐻‘𝑗) = ((𝐹‘𝑗)↑𝑁) |
50 | 40, 49 | nfim 1865 | . . . . 5 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = ((𝐹‘𝑗)↑𝑁)) |
51 | eleq1 2718 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) | |
52 | 51 | anbi2d 740 | . . . . . 6 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
53 | fveq2 6229 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (𝐻‘𝑘) = (𝐻‘𝑗)) | |
54 | fveq2 6229 | . . . . . . . 8 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
55 | 54 | oveq1d 6705 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘)↑𝑁) = ((𝐹‘𝑗)↑𝑁)) |
56 | 53, 55 | eqeq12d 2666 | . . . . . 6 ⊢ (𝑘 = 𝑗 → ((𝐻‘𝑘) = ((𝐹‘𝑘)↑𝑁) ↔ (𝐻‘𝑗) = ((𝐹‘𝑗)↑𝑁))) |
57 | 52, 56 | imbi12d 333 | . . . . 5 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘)↑𝑁)) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = ((𝐹‘𝑗)↑𝑁)))) |
58 | climexp.10 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘)↑𝑁)) | |
59 | 50, 57, 58 | chvar 2298 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = ((𝐹‘𝑗)↑𝑁)) |
60 | 35, 37, 59 | 3eqtr4rd 2696 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = (((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹)‘𝑗)) |
61 | 1, 20, 28, 2, 60 | climeq 14342 | . 2 ⊢ (𝜑 → (𝐻 ⇝ (𝐴↑𝑁) ↔ ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹) ⇝ (𝐴↑𝑁))) |
62 | 19, 61 | mpbird 247 | 1 ⊢ (𝜑 → 𝐻 ⇝ (𝐴↑𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 Ⅎwnf 1748 ∈ wcel 2030 Ⅎwnfc 2780 Vcvv 3231 class class class wbr 4685 ↦ cmpt 4762 ∘ ccom 5147 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 ℂcc 9972 ℕ0cn0 11330 ℤcz 11415 ℤ≥cuz 11725 ↑cexp 12900 ⇝ cli 14259 TopOpenctopn 16129 ℂfldccnfld 19794 Cn ccn 21076 –cn→ccncf 22726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 ax-mulf 10054 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-of 6939 df-om 7108 df-1st 7210 df-2nd 7211 df-supp 7341 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-oadd 7609 df-er 7787 df-map 7901 df-ixp 7951 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-fsupp 8317 df-fi 8358 df-sup 8389 df-inf 8390 df-oi 8456 df-card 8803 df-cda 9028 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-q 11827 df-rp 11871 df-xneg 11984 df-xadd 11985 df-xmul 11986 df-icc 12220 df-fz 12365 df-fzo 12505 df-seq 12842 df-exp 12901 df-hash 13158 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-clim 14263 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-starv 16003 df-sca 16004 df-vsca 16005 df-ip 16006 df-tset 16007 df-ple 16008 df-ds 16011 df-unif 16012 df-hom 16013 df-cco 16014 df-rest 16130 df-topn 16131 df-0g 16149 df-gsum 16150 df-topgen 16151 df-pt 16152 df-prds 16155 df-xrs 16209 df-qtop 16214 df-imas 16215 df-xps 16217 df-mre 16293 df-mrc 16294 df-acs 16296 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-submnd 17383 df-mulg 17588 df-cntz 17796 df-cmn 18241 df-psmet 19786 df-xmet 19787 df-met 19788 df-bl 19789 df-mopn 19790 df-cnfld 19795 df-top 20747 df-topon 20764 df-topsp 20785 df-bases 20798 df-cn 21079 df-cnp 21080 df-tx 21413 df-hmeo 21606 df-xms 22172 df-ms 22173 df-tms 22174 df-cncf 22728 |
This theorem is referenced by: stirlinglem8 40616 |
Copyright terms: Public domain | W3C validator |