MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climeq Structured version   Visualization version   GIF version

Theorem climeq 14342
Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Mario Carneiro, 5-Nov-2013.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climeq.1 𝑍 = (ℤ𝑀)
climeq.2 (𝜑𝐹𝑉)
climeq.3 (𝜑𝐺𝑊)
climeq.5 (𝜑𝑀 ∈ ℤ)
climeq.6 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘))
Assertion
Ref Expression
climeq (𝜑 → (𝐹𝐴𝐺𝐴))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝐺   𝜑,𝑘   𝑘,𝑍
Allowed substitution hints:   𝑀(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem climeq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climeq.1 . . 3 𝑍 = (ℤ𝑀)
2 climeq.5 . . 3 (𝜑𝑀 ∈ ℤ)
3 climeq.2 . . 3 (𝜑𝐹𝑉)
4 climeq.6 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘))
51, 2, 3, 4clim2 14279 . 2 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦𝑍𝑘 ∈ (ℤ𝑦)((𝐺𝑘) ∈ ℂ ∧ (abs‘((𝐺𝑘) − 𝐴)) < 𝑥))))
6 climeq.3 . . 3 (𝜑𝐺𝑊)
7 eqidd 2652 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐺𝑘))
81, 2, 6, 7clim2 14279 . 2 (𝜑 → (𝐺𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦𝑍𝑘 ∈ (ℤ𝑦)((𝐺𝑘) ∈ ℂ ∧ (abs‘((𝐺𝑘) − 𝐴)) < 𝑥))))
95, 8bitr4d 271 1 (𝜑 → (𝐹𝐴𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wral 2941  wrex 2942   class class class wbr 4685  cfv 5926  (class class class)co 6690  cc 9972   < clt 10112  cmin 10304  cz 11415  cuz 11725  +crp 11870  abscabs 14018  cli 14259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-pre-lttri 10048  ax-pre-lttrn 10049
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-neg 10307  df-z 11416  df-uz 11726  df-clim 14263
This theorem is referenced by:  climmpt  14346  climres  14350  climshft  14351  climshft2  14357  isumclim3  14534  iprodclim3  14775  logtayl  24451  dfef2  24742  climexp  40155  climeldmeq  40215  climfveq  40219  climfveqf  40230  climeqf  40238  stirlinglem14  40622  fourierdlem112  40753  vonioolem1  41215
  Copyright terms: Public domain W3C validator