Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climeldmeqmpt3 Structured version   Visualization version   GIF version

Theorem climeldmeqmpt3 40239
 Description: Two functions that are eventually equal, either both are convergent or both are divergent. TODO: this is more general than climeldmeqmpt 40218 and should replace it. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
climeldmeqmpt3.k 𝑘𝜑
climeldmeqmpt3.m (𝜑𝑀 ∈ ℤ)
climeldmeqmpt3.z 𝑍 = (ℤ𝑀)
climeldmeqmpt3.a (𝜑𝐴𝑉)
climeldmeqmpt3.c (𝜑𝐶𝑊)
climeldmeqmpt3.i (𝜑𝑍𝐴)
climeldmeqmpt3.s (𝜑𝑍𝐶)
climeldmeqmpt3.b ((𝜑𝑘𝑍) → 𝐵𝑈)
climeldmeqmpt3.e ((𝜑𝑘𝑍) → 𝐵 = 𝐷)
Assertion
Ref Expression
climeldmeqmpt3 (𝜑 → ((𝑘𝐴𝐵) ∈ dom ⇝ ↔ (𝑘𝐶𝐷) ∈ dom ⇝ ))
Distinct variable groups:   𝐴,𝑘   𝐶,𝑘   𝑈,𝑘   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐷(𝑘)   𝑀(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem climeldmeqmpt3
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climeldmeqmpt3.z . 2 𝑍 = (ℤ𝑀)
2 climeldmeqmpt3.a . . 3 (𝜑𝐴𝑉)
32mptexd 6528 . 2 (𝜑 → (𝑘𝐴𝐵) ∈ V)
4 climeldmeqmpt3.c . . 3 (𝜑𝐶𝑊)
54mptexd 6528 . 2 (𝜑 → (𝑘𝐶𝐷) ∈ V)
6 climeldmeqmpt3.m . 2 (𝜑𝑀 ∈ ℤ)
7 climeldmeqmpt3.k . . . . . 6 𝑘𝜑
8 nfv 1883 . . . . . 6 𝑘 𝑗𝑍
97, 8nfan 1868 . . . . 5 𝑘(𝜑𝑗𝑍)
10 nfcsb1v 3582 . . . . . 6 𝑘𝑗 / 𝑘𝐵
11 nfcv 2793 . . . . . . 7 𝑘𝑗
1211nfcsb1 3581 . . . . . 6 𝑘𝑗 / 𝑘𝐷
1310, 12nfeq 2805 . . . . 5 𝑘𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷
149, 13nfim 1865 . . . 4 𝑘((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷)
15 eleq1 2718 . . . . . 6 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
1615anbi2d 740 . . . . 5 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
17 csbeq1a 3575 . . . . . 6 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
18 csbeq1a 3575 . . . . . 6 (𝑘 = 𝑗𝐷 = 𝑗 / 𝑘𝐷)
1917, 18eqeq12d 2666 . . . . 5 (𝑘 = 𝑗 → (𝐵 = 𝐷𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷))
2016, 19imbi12d 333 . . . 4 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → 𝐵 = 𝐷) ↔ ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷)))
21 climeldmeqmpt3.e . . . 4 ((𝜑𝑘𝑍) → 𝐵 = 𝐷)
2214, 20, 21chvar 2298 . . 3 ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷)
23 climeldmeqmpt3.i . . . . 5 (𝜑𝑍𝐴)
2423sselda 3636 . . . 4 ((𝜑𝑗𝑍) → 𝑗𝐴)
25 nfcv 2793 . . . . . . 7 𝑘𝑈
2610, 25nfel 2806 . . . . . 6 𝑘𝑗 / 𝑘𝐵𝑈
279, 26nfim 1865 . . . . 5 𝑘((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵𝑈)
2817eleq1d 2715 . . . . . 6 (𝑘 = 𝑗 → (𝐵𝑈𝑗 / 𝑘𝐵𝑈))
2916, 28imbi12d 333 . . . . 5 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → 𝐵𝑈) ↔ ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵𝑈)))
30 climeldmeqmpt3.b . . . . 5 ((𝜑𝑘𝑍) → 𝐵𝑈)
3127, 29, 30chvar 2298 . . . 4 ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵𝑈)
3211nfcsb1 3581 . . . . 5 𝑘𝑗 / 𝑘𝐵
33 eqid 2651 . . . . 5 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
3411, 32, 17, 33fvmptf 6340 . . . 4 ((𝑗𝐴𝑗 / 𝑘𝐵𝑈) → ((𝑘𝐴𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
3524, 31, 34syl2anc 694 . . 3 ((𝜑𝑗𝑍) → ((𝑘𝐴𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
36 climeldmeqmpt3.s . . . . 5 (𝜑𝑍𝐶)
3736sselda 3636 . . . 4 ((𝜑𝑗𝑍) → 𝑗𝐶)
3822, 31eqeltrrd 2731 . . . 4 ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐷𝑈)
39 eqid 2651 . . . . 5 (𝑘𝐶𝐷) = (𝑘𝐶𝐷)
4011, 12, 18, 39fvmptf 6340 . . . 4 ((𝑗𝐶𝑗 / 𝑘𝐷𝑈) → ((𝑘𝐶𝐷)‘𝑗) = 𝑗 / 𝑘𝐷)
4137, 38, 40syl2anc 694 . . 3 ((𝜑𝑗𝑍) → ((𝑘𝐶𝐷)‘𝑗) = 𝑗 / 𝑘𝐷)
4222, 35, 413eqtr4d 2695 . 2 ((𝜑𝑗𝑍) → ((𝑘𝐴𝐵)‘𝑗) = ((𝑘𝐶𝐷)‘𝑗))
431, 3, 5, 6, 42climeldmeq 40215 1 (𝜑 → ((𝑘𝐴𝐵) ∈ dom ⇝ ↔ (𝑘𝐶𝐷) ∈ dom ⇝ ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523  Ⅎwnf 1748   ∈ wcel 2030  Vcvv 3231  ⦋csb 3566   ⊆ wss 3607   ↦ cmpt 4762  dom cdm 5143  ‘cfv 5926  ℤcz 11415  ℤ≥cuz 11725   ⇝ cli 14259 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263 This theorem is referenced by:  smflimmpt  41337
 Copyright terms: Public domain W3C validator