![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climeldmeq | Structured version Visualization version GIF version |
Description: Two functions that are eventually equal, either both are convergent or both are divergent. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
climeldmeq.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climeldmeq.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
climeldmeq.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
climeldmeq.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climeldmeq.e | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
Ref | Expression |
---|---|
climeldmeq | ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climeldmeq.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
2 | 1 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐺 ∈ 𝑊) |
3 | fvexd 6356 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐹) ∈ V) | |
4 | climdm 14476 | . . . . . . 7 ⊢ (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹)) | |
5 | 4 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹))) |
6 | 5 | biimpa 502 | . . . . 5 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘𝐹)) |
7 | climeldmeq.z | . . . . . . 7 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
8 | climeldmeq.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
9 | climeldmeq.m | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
10 | climeldmeq.e | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) | |
11 | 7, 8, 1, 9, 10 | climeq 14489 | . . . . . 6 ⊢ (𝜑 → (𝐹 ⇝ ( ⇝ ‘𝐹) ↔ 𝐺 ⇝ ( ⇝ ‘𝐹))) |
12 | 11 | adantr 472 | . . . . 5 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → (𝐹 ⇝ ( ⇝ ‘𝐹) ↔ 𝐺 ⇝ ( ⇝ ‘𝐹))) |
13 | 6, 12 | mpbid 222 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐺 ⇝ ( ⇝ ‘𝐹)) |
14 | breldmg 5477 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ ( ⇝ ‘𝐹) ∈ V ∧ 𝐺 ⇝ ( ⇝ ‘𝐹)) → 𝐺 ∈ dom ⇝ ) | |
15 | 2, 3, 13, 14 | syl3anc 1473 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐺 ∈ dom ⇝ ) |
16 | 15 | ex 449 | . 2 ⊢ (𝜑 → (𝐹 ∈ dom ⇝ → 𝐺 ∈ dom ⇝ )) |
17 | 8 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ 𝐺 ∈ dom ⇝ ) → 𝐹 ∈ 𝑉) |
18 | fvexd 6356 | . . . 4 ⊢ ((𝜑 ∧ 𝐺 ∈ dom ⇝ ) → ( ⇝ ‘𝐺) ∈ V) | |
19 | climdm 14476 | . . . . . . 7 ⊢ (𝐺 ∈ dom ⇝ ↔ 𝐺 ⇝ ( ⇝ ‘𝐺)) | |
20 | 19 | biimpi 206 | . . . . . 6 ⊢ (𝐺 ∈ dom ⇝ → 𝐺 ⇝ ( ⇝ ‘𝐺)) |
21 | 20 | adantl 473 | . . . . 5 ⊢ ((𝜑 ∧ 𝐺 ∈ dom ⇝ ) → 𝐺 ⇝ ( ⇝ ‘𝐺)) |
22 | 10 | eqcomd 2758 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐹‘𝑘)) |
23 | 7, 1, 8, 9, 22 | climeq 14489 | . . . . . 6 ⊢ (𝜑 → (𝐺 ⇝ ( ⇝ ‘𝐺) ↔ 𝐹 ⇝ ( ⇝ ‘𝐺))) |
24 | 23 | adantr 472 | . . . . 5 ⊢ ((𝜑 ∧ 𝐺 ∈ dom ⇝ ) → (𝐺 ⇝ ( ⇝ ‘𝐺) ↔ 𝐹 ⇝ ( ⇝ ‘𝐺))) |
25 | 21, 24 | mpbid 222 | . . . 4 ⊢ ((𝜑 ∧ 𝐺 ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘𝐺)) |
26 | breldmg 5477 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ ( ⇝ ‘𝐺) ∈ V ∧ 𝐹 ⇝ ( ⇝ ‘𝐺)) → 𝐹 ∈ dom ⇝ ) | |
27 | 17, 18, 25, 26 | syl3anc 1473 | . . 3 ⊢ ((𝜑 ∧ 𝐺 ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝ ) |
28 | 27 | ex 449 | . 2 ⊢ (𝜑 → (𝐺 ∈ dom ⇝ → 𝐹 ∈ dom ⇝ )) |
29 | 16, 28 | impbid 202 | 1 ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1624 ∈ wcel 2131 Vcvv 3332 class class class wbr 4796 dom cdm 5258 ‘cfv 6041 ℤcz 11561 ℤ≥cuz 11871 ⇝ cli 14406 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 ax-pre-sup 10198 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rmo 3050 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-2nd 7326 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-er 7903 df-en 8114 df-dom 8115 df-sdom 8116 df-sup 8505 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-div 10869 df-nn 11205 df-2 11263 df-3 11264 df-n0 11477 df-z 11562 df-uz 11872 df-rp 12018 df-seq 12988 df-exp 13047 df-cj 14030 df-re 14031 df-im 14032 df-sqrt 14166 df-abs 14167 df-clim 14410 |
This theorem is referenced by: climeldmeqmpt 40395 climfveq 40396 climfveqf 40407 climeldmeqf 40410 climeldmeqmpt3 40416 |
Copyright terms: Public domain | W3C validator |