Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climdivf Structured version   Visualization version   GIF version

Theorem climdivf 40362
Description: Limit of the ratio of two converging sequences. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climdivf.1 𝑘𝜑
climdivf.2 𝑘𝐹
climdivf.3 𝑘𝐺
climdivf.4 𝑘𝐻
climdivf.5 𝑍 = (ℤ𝑀)
climdivf.6 (𝜑𝑀 ∈ ℤ)
climdivf.7 (𝜑𝐹𝐴)
climdivf.8 (𝜑𝐻𝑋)
climdivf.9 (𝜑𝐺𝐵)
climdivf.10 (𝜑𝐵 ≠ 0)
climdivf.11 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
climdivf.12 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ (ℂ ∖ {0}))
climdivf.13 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) / (𝐺𝑘)))
Assertion
Ref Expression
climdivf (𝜑𝐻 ⇝ (𝐴 / 𝐵))
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝐻(𝑘)   𝑀(𝑘)   𝑋(𝑘)

Proof of Theorem climdivf
StepHypRef Expression
1 climdivf.1 . . 3 𝑘𝜑
2 climdivf.2 . . 3 𝑘𝐹
3 nfmpt1 4881 . . 3 𝑘(𝑘𝑍 ↦ (1 / (𝐺𝑘)))
4 climdivf.4 . . 3 𝑘𝐻
5 climdivf.5 . . 3 𝑍 = (ℤ𝑀)
6 climdivf.6 . . 3 (𝜑𝑀 ∈ ℤ)
7 climdivf.7 . . 3 (𝜑𝐹𝐴)
8 climdivf.8 . . 3 (𝜑𝐻𝑋)
9 climdivf.3 . . . 4 𝑘𝐺
10 climdivf.9 . . . 4 (𝜑𝐺𝐵)
11 climdivf.10 . . . 4 (𝜑𝐵 ≠ 0)
12 climdivf.12 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ (ℂ ∖ {0}))
13 simpr 471 . . . . 5 ((𝜑𝑘𝑍) → 𝑘𝑍)
1412eldifad 3735 . . . . . 6 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
15 eldifsni 4457 . . . . . . 7 ((𝐺𝑘) ∈ (ℂ ∖ {0}) → (𝐺𝑘) ≠ 0)
1612, 15syl 17 . . . . . 6 ((𝜑𝑘𝑍) → (𝐺𝑘) ≠ 0)
1714, 16reccld 10996 . . . . 5 ((𝜑𝑘𝑍) → (1 / (𝐺𝑘)) ∈ ℂ)
18 eqid 2771 . . . . . 6 (𝑘𝑍 ↦ (1 / (𝐺𝑘))) = (𝑘𝑍 ↦ (1 / (𝐺𝑘)))
1918fvmpt2 6433 . . . . 5 ((𝑘𝑍 ∧ (1 / (𝐺𝑘)) ∈ ℂ) → ((𝑘𝑍 ↦ (1 / (𝐺𝑘)))‘𝑘) = (1 / (𝐺𝑘)))
2013, 17, 19syl2anc 573 . . . 4 ((𝜑𝑘𝑍) → ((𝑘𝑍 ↦ (1 / (𝐺𝑘)))‘𝑘) = (1 / (𝐺𝑘)))
21 fvex 6342 . . . . . . 7 (ℤ𝑀) ∈ V
225, 21eqeltri 2846 . . . . . 6 𝑍 ∈ V
2322mptex 6630 . . . . 5 (𝑘𝑍 ↦ (1 / (𝐺𝑘))) ∈ V
2423a1i 11 . . . 4 (𝜑 → (𝑘𝑍 ↦ (1 / (𝐺𝑘))) ∈ V)
251, 9, 3, 5, 6, 10, 11, 12, 20, 24climrecf 40359 . . 3 (𝜑 → (𝑘𝑍 ↦ (1 / (𝐺𝑘))) ⇝ (1 / 𝐵))
26 climdivf.11 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
2720, 17eqeltrd 2850 . . 3 ((𝜑𝑘𝑍) → ((𝑘𝑍 ↦ (1 / (𝐺𝑘)))‘𝑘) ∈ ℂ)
28 climdivf.13 . . . 4 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) / (𝐺𝑘)))
2926, 14, 16divrecd 11006 . . . 4 ((𝜑𝑘𝑍) → ((𝐹𝑘) / (𝐺𝑘)) = ((𝐹𝑘) · (1 / (𝐺𝑘))))
3020eqcomd 2777 . . . . 5 ((𝜑𝑘𝑍) → (1 / (𝐺𝑘)) = ((𝑘𝑍 ↦ (1 / (𝐺𝑘)))‘𝑘))
3130oveq2d 6809 . . . 4 ((𝜑𝑘𝑍) → ((𝐹𝑘) · (1 / (𝐺𝑘))) = ((𝐹𝑘) · ((𝑘𝑍 ↦ (1 / (𝐺𝑘)))‘𝑘)))
3228, 29, 313eqtrd 2809 . . 3 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · ((𝑘𝑍 ↦ (1 / (𝐺𝑘)))‘𝑘)))
331, 2, 3, 4, 5, 6, 7, 8, 25, 26, 27, 32climmulf 40354 . 2 (𝜑𝐻 ⇝ (𝐴 · (1 / 𝐵)))
34 climcl 14438 . . . 4 (𝐹𝐴𝐴 ∈ ℂ)
357, 34syl 17 . . 3 (𝜑𝐴 ∈ ℂ)
36 climcl 14438 . . . 4 (𝐺𝐵𝐵 ∈ ℂ)
3710, 36syl 17 . . 3 (𝜑𝐵 ∈ ℂ)
3835, 37, 11divrecd 11006 . 2 (𝜑 → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵)))
3933, 38breqtrrd 4814 1 (𝜑𝐻 ⇝ (𝐴 / 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wnf 1856  wcel 2145  wnfc 2900  wne 2943  Vcvv 3351  cdif 3720  {csn 4316   class class class wbr 4786  cmpt 4863  cfv 6031  (class class class)co 6793  cc 10136  0cc0 10138  1c1 10139   · cmul 10143   / cdiv 10886  cz 11579  cuz 11888  cli 14423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-sup 8504  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427
This theorem is referenced by:  stirlinglem8  40815  fourierdlem103  40943  fourierdlem104  40944
  Copyright terms: Public domain W3C validator