MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climcndslem1 Structured version   Visualization version   GIF version

Theorem climcndslem1 14625
Description: Lemma for climcnds 14627: bound the original series by the condensed series. (Contributed by Mario Carneiro, 18-Jul-2014.)
Hypotheses
Ref Expression
climcnds.1 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
climcnds.2 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝐹𝑘))
climcnds.3 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
climcnds.4 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
Assertion
Ref Expression
climcndslem1 ((𝜑𝑁 ∈ ℕ0) → (seq1( + , 𝐹)‘((2↑(𝑁 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑁))
Distinct variable groups:   𝑘,𝑛,𝐹   𝑘,𝐺,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝑁(𝑘,𝑛)

Proof of Theorem climcndslem1
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6697 . . . . . . . . . . 11 (𝑥 = 0 → (𝑥 + 1) = (0 + 1))
2 0p1e1 11170 . . . . . . . . . . 11 (0 + 1) = 1
31, 2syl6eq 2701 . . . . . . . . . 10 (𝑥 = 0 → (𝑥 + 1) = 1)
43oveq2d 6706 . . . . . . . . 9 (𝑥 = 0 → (2↑(𝑥 + 1)) = (2↑1))
5 2cn 11129 . . . . . . . . . . 11 2 ∈ ℂ
6 exp1 12906 . . . . . . . . . . 11 (2 ∈ ℂ → (2↑1) = 2)
75, 6ax-mp 5 . . . . . . . . . 10 (2↑1) = 2
8 df-2 11117 . . . . . . . . . 10 2 = (1 + 1)
97, 8eqtri 2673 . . . . . . . . 9 (2↑1) = (1 + 1)
104, 9syl6eq 2701 . . . . . . . 8 (𝑥 = 0 → (2↑(𝑥 + 1)) = (1 + 1))
1110oveq1d 6705 . . . . . . 7 (𝑥 = 0 → ((2↑(𝑥 + 1)) − 1) = ((1 + 1) − 1))
12 ax-1cn 10032 . . . . . . . 8 1 ∈ ℂ
1312, 12pncan3oi 10335 . . . . . . 7 ((1 + 1) − 1) = 1
1411, 13syl6eq 2701 . . . . . 6 (𝑥 = 0 → ((2↑(𝑥 + 1)) − 1) = 1)
1514fveq2d 6233 . . . . 5 (𝑥 = 0 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) = (seq1( + , 𝐹)‘1))
16 fveq2 6229 . . . . 5 (𝑥 = 0 → (seq0( + , 𝐺)‘𝑥) = (seq0( + , 𝐺)‘0))
1715, 16breq12d 4698 . . . 4 (𝑥 = 0 → ((seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥) ↔ (seq1( + , 𝐹)‘1) ≤ (seq0( + , 𝐺)‘0)))
1817imbi2d 329 . . 3 (𝑥 = 0 → ((𝜑 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥)) ↔ (𝜑 → (seq1( + , 𝐹)‘1) ≤ (seq0( + , 𝐺)‘0))))
19 oveq1 6697 . . . . . . . 8 (𝑥 = 𝑗 → (𝑥 + 1) = (𝑗 + 1))
2019oveq2d 6706 . . . . . . 7 (𝑥 = 𝑗 → (2↑(𝑥 + 1)) = (2↑(𝑗 + 1)))
2120oveq1d 6705 . . . . . 6 (𝑥 = 𝑗 → ((2↑(𝑥 + 1)) − 1) = ((2↑(𝑗 + 1)) − 1))
2221fveq2d 6233 . . . . 5 (𝑥 = 𝑗 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) = (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)))
23 fveq2 6229 . . . . 5 (𝑥 = 𝑗 → (seq0( + , 𝐺)‘𝑥) = (seq0( + , 𝐺)‘𝑗))
2422, 23breq12d 4698 . . . 4 (𝑥 = 𝑗 → ((seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥) ↔ (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑗)))
2524imbi2d 329 . . 3 (𝑥 = 𝑗 → ((𝜑 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥)) ↔ (𝜑 → (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑗))))
26 oveq1 6697 . . . . . . . 8 (𝑥 = (𝑗 + 1) → (𝑥 + 1) = ((𝑗 + 1) + 1))
2726oveq2d 6706 . . . . . . 7 (𝑥 = (𝑗 + 1) → (2↑(𝑥 + 1)) = (2↑((𝑗 + 1) + 1)))
2827oveq1d 6705 . . . . . 6 (𝑥 = (𝑗 + 1) → ((2↑(𝑥 + 1)) − 1) = ((2↑((𝑗 + 1) + 1)) − 1))
2928fveq2d 6233 . . . . 5 (𝑥 = (𝑗 + 1) → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) = (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)))
30 fveq2 6229 . . . . 5 (𝑥 = (𝑗 + 1) → (seq0( + , 𝐺)‘𝑥) = (seq0( + , 𝐺)‘(𝑗 + 1)))
3129, 30breq12d 4698 . . . 4 (𝑥 = (𝑗 + 1) → ((seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥) ↔ (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) ≤ (seq0( + , 𝐺)‘(𝑗 + 1))))
3231imbi2d 329 . . 3 (𝑥 = (𝑗 + 1) → ((𝜑 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥)) ↔ (𝜑 → (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) ≤ (seq0( + , 𝐺)‘(𝑗 + 1)))))
33 oveq1 6697 . . . . . . . 8 (𝑥 = 𝑁 → (𝑥 + 1) = (𝑁 + 1))
3433oveq2d 6706 . . . . . . 7 (𝑥 = 𝑁 → (2↑(𝑥 + 1)) = (2↑(𝑁 + 1)))
3534oveq1d 6705 . . . . . 6 (𝑥 = 𝑁 → ((2↑(𝑥 + 1)) − 1) = ((2↑(𝑁 + 1)) − 1))
3635fveq2d 6233 . . . . 5 (𝑥 = 𝑁 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) = (seq1( + , 𝐹)‘((2↑(𝑁 + 1)) − 1)))
37 fveq2 6229 . . . . 5 (𝑥 = 𝑁 → (seq0( + , 𝐺)‘𝑥) = (seq0( + , 𝐺)‘𝑁))
3836, 37breq12d 4698 . . . 4 (𝑥 = 𝑁 → ((seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥) ↔ (seq1( + , 𝐹)‘((2↑(𝑁 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑁)))
3938imbi2d 329 . . 3 (𝑥 = 𝑁 → ((𝜑 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥)) ↔ (𝜑 → (seq1( + , 𝐹)‘((2↑(𝑁 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑁))))
40 1nn 11069 . . . . . . 7 1 ∈ ℕ
41 climcnds.1 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
4241ralrimiva 2995 . . . . . . 7 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ)
43 fveq2 6229 . . . . . . . . 9 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
4443eleq1d 2715 . . . . . . . 8 (𝑘 = 1 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘1) ∈ ℝ))
4544rspcv 3336 . . . . . . 7 (1 ∈ ℕ → (∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ → (𝐹‘1) ∈ ℝ))
4640, 42, 45mpsyl 68 . . . . . 6 (𝜑 → (𝐹‘1) ∈ ℝ)
4746leidd 10632 . . . . 5 (𝜑 → (𝐹‘1) ≤ (𝐹‘1))
4846recnd 10106 . . . . . 6 (𝜑 → (𝐹‘1) ∈ ℂ)
4948mulid2d 10096 . . . . 5 (𝜑 → (1 · (𝐹‘1)) = (𝐹‘1))
5047, 49breqtrrd 4713 . . . 4 (𝜑 → (𝐹‘1) ≤ (1 · (𝐹‘1)))
51 1z 11445 . . . . 5 1 ∈ ℤ
52 eqidd 2652 . . . . 5 (𝜑 → (𝐹‘1) = (𝐹‘1))
5351, 52seq1i 12855 . . . 4 (𝜑 → (seq1( + , 𝐹)‘1) = (𝐹‘1))
54 0z 11426 . . . . 5 0 ∈ ℤ
55 0nn0 11345 . . . . . 6 0 ∈ ℕ0
56 climcnds.4 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
5756ralrimiva 2995 . . . . . 6 (𝜑 → ∀𝑛 ∈ ℕ0 (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
58 fveq2 6229 . . . . . . . 8 (𝑛 = 0 → (𝐺𝑛) = (𝐺‘0))
59 oveq2 6698 . . . . . . . . . 10 (𝑛 = 0 → (2↑𝑛) = (2↑0))
60 exp0 12904 . . . . . . . . . . 11 (2 ∈ ℂ → (2↑0) = 1)
615, 60ax-mp 5 . . . . . . . . . 10 (2↑0) = 1
6259, 61syl6eq 2701 . . . . . . . . 9 (𝑛 = 0 → (2↑𝑛) = 1)
6362fveq2d 6233 . . . . . . . . 9 (𝑛 = 0 → (𝐹‘(2↑𝑛)) = (𝐹‘1))
6462, 63oveq12d 6708 . . . . . . . 8 (𝑛 = 0 → ((2↑𝑛) · (𝐹‘(2↑𝑛))) = (1 · (𝐹‘1)))
6558, 64eqeq12d 2666 . . . . . . 7 (𝑛 = 0 → ((𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))) ↔ (𝐺‘0) = (1 · (𝐹‘1))))
6665rspcv 3336 . . . . . 6 (0 ∈ ℕ0 → (∀𝑛 ∈ ℕ0 (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))) → (𝐺‘0) = (1 · (𝐹‘1))))
6755, 57, 66mpsyl 68 . . . . 5 (𝜑 → (𝐺‘0) = (1 · (𝐹‘1)))
6854, 67seq1i 12855 . . . 4 (𝜑 → (seq0( + , 𝐺)‘0) = (1 · (𝐹‘1)))
6950, 53, 683brtr4d 4717 . . 3 (𝜑 → (seq1( + , 𝐹)‘1) ≤ (seq0( + , 𝐺)‘0))
70 fzfid 12812 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)) ∈ Fin)
71 simpl 472 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → 𝜑)
7271adantr 480 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) → 𝜑)
73 2nn 11223 . . . . . . . . . . . 12 2 ∈ ℕ
74 peano2nn0 11371 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ0 → (𝑗 + 1) ∈ ℕ0)
7574adantl 481 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (𝑗 + 1) ∈ ℕ0)
76 nnexpcl 12913 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ (𝑗 + 1) ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℕ)
7773, 75, 76sylancr 696 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℕ)
78 elfzuz 12376 . . . . . . . . . . 11 (𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)) → 𝑘 ∈ (ℤ‘(2↑(𝑗 + 1))))
79 eluznn 11796 . . . . . . . . . . 11 (((2↑(𝑗 + 1)) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(2↑(𝑗 + 1)))) → 𝑘 ∈ ℕ)
8077, 78, 79syl2an 493 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) → 𝑘 ∈ ℕ)
8172, 80, 41syl2anc 694 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) → (𝐹𝑘) ∈ ℝ)
8242adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ)
83 fveq2 6229 . . . . . . . . . . . . 13 (𝑘 = (2↑(𝑗 + 1)) → (𝐹𝑘) = (𝐹‘(2↑(𝑗 + 1))))
8483eleq1d 2715 . . . . . . . . . . . 12 (𝑘 = (2↑(𝑗 + 1)) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(2↑(𝑗 + 1))) ∈ ℝ))
8584rspcv 3336 . . . . . . . . . . 11 ((2↑(𝑗 + 1)) ∈ ℕ → (∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ → (𝐹‘(2↑(𝑗 + 1))) ∈ ℝ))
8677, 82, 85sylc 65 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → (𝐹‘(2↑(𝑗 + 1))) ∈ ℝ)
8786adantr 480 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) → (𝐹‘(2↑(𝑗 + 1))) ∈ ℝ)
88 simpr 476 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) → 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1))))
89 simplll 813 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...𝑛)) → 𝜑)
9077adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) → (2↑(𝑗 + 1)) ∈ ℕ)
91 elfzuz 12376 . . . . . . . . . . . . . 14 (𝑘 ∈ ((2↑(𝑗 + 1))...𝑛) → 𝑘 ∈ (ℤ‘(2↑(𝑗 + 1))))
9290, 91, 79syl2an 493 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...𝑛)) → 𝑘 ∈ ℕ)
9389, 92, 41syl2anc 694 . . . . . . . . . . . 12 ((((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...𝑛)) → (𝐹𝑘) ∈ ℝ)
94 simplll 813 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...(𝑛 − 1))) → 𝜑)
95 elfzuz 12376 . . . . . . . . . . . . . 14 (𝑘 ∈ ((2↑(𝑗 + 1))...(𝑛 − 1)) → 𝑘 ∈ (ℤ‘(2↑(𝑗 + 1))))
9690, 95, 79syl2an 493 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...(𝑛 − 1))) → 𝑘 ∈ ℕ)
97 climcnds.3 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
9894, 96, 97syl2anc 694 . . . . . . . . . . . 12 ((((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...(𝑛 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
9988, 93, 98monoord2 12872 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) → (𝐹𝑛) ≤ (𝐹‘(2↑(𝑗 + 1))))
10099ralrimiva 2995 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ∀𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))(𝐹𝑛) ≤ (𝐹‘(2↑(𝑗 + 1))))
101 fveq2 6229 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
102101breq1d 4695 . . . . . . . . . . 11 (𝑛 = 𝑘 → ((𝐹𝑛) ≤ (𝐹‘(2↑(𝑗 + 1))) ↔ (𝐹𝑘) ≤ (𝐹‘(2↑(𝑗 + 1)))))
103102rspccva 3339 . . . . . . . . . 10 ((∀𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))(𝐹𝑛) ≤ (𝐹‘(2↑(𝑗 + 1))) ∧ 𝑘 ∈ (ℤ‘(2↑(𝑗 + 1)))) → (𝐹𝑘) ≤ (𝐹‘(2↑(𝑗 + 1))))
104100, 78, 103syl2an 493 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) → (𝐹𝑘) ≤ (𝐹‘(2↑(𝑗 + 1))))
10570, 81, 87, 104fsumle 14575 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘) ≤ Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹‘(2↑(𝑗 + 1))))
106 fzfid 12812 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → (1...((2↑(𝑗 + 1)) − 1)) ∈ Fin)
107 hashcl 13185 . . . . . . . . . . . . 13 ((1...((2↑(𝑗 + 1)) − 1)) ∈ Fin → (#‘(1...((2↑(𝑗 + 1)) − 1))) ∈ ℕ0)
108106, 107syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (#‘(1...((2↑(𝑗 + 1)) − 1))) ∈ ℕ0)
109108nn0cnd 11391 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → (#‘(1...((2↑(𝑗 + 1)) − 1))) ∈ ℂ)
11077nnred 11073 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℝ)
111110recnd 10106 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℂ)
112 hashcl 13185 . . . . . . . . . . . . 13 (((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)) ∈ Fin → (#‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) ∈ ℕ0)
11370, 112syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (#‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) ∈ ℕ0)
114113nn0cnd 11391 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → (#‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) ∈ ℂ)
115 2z 11447 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℤ
116 zexpcl 12915 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℤ ∧ (𝑗 + 1) ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℤ)
117115, 75, 116sylancr 696 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℤ)
118 nn0p1nn 11370 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℕ0 → (𝑗 + 1) ∈ ℕ)
119118adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ ℕ0) → (𝑗 + 1) ∈ ℕ)
120 nnuz 11761 . . . . . . . . . . . . . . . . . . . . . 22 ℕ = (ℤ‘1)
121119, 120syl6eleq 2740 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ ℕ0) → (𝑗 + 1) ∈ (ℤ‘1))
122 2re 11128 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℝ
123 1le2 11279 . . . . . . . . . . . . . . . . . . . . . 22 1 ≤ 2
124 leexp2a 12956 . . . . . . . . . . . . . . . . . . . . . 22 ((2 ∈ ℝ ∧ 1 ≤ 2 ∧ (𝑗 + 1) ∈ (ℤ‘1)) → (2↑1) ≤ (2↑(𝑗 + 1)))
125122, 123, 124mp3an12 1454 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 + 1) ∈ (ℤ‘1) → (2↑1) ≤ (2↑(𝑗 + 1)))
126121, 125syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ0) → (2↑1) ≤ (2↑(𝑗 + 1)))
1277, 126syl5eqbrr 4721 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ0) → 2 ≤ (2↑(𝑗 + 1)))
128115eluz1i 11733 . . . . . . . . . . . . . . . . . . 19 ((2↑(𝑗 + 1)) ∈ (ℤ‘2) ↔ ((2↑(𝑗 + 1)) ∈ ℤ ∧ 2 ≤ (2↑(𝑗 + 1))))
129117, 127, 128sylanbrc 699 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ (ℤ‘2))
130 uz2m1nn 11801 . . . . . . . . . . . . . . . . . 18 ((2↑(𝑗 + 1)) ∈ (ℤ‘2) → ((2↑(𝑗 + 1)) − 1) ∈ ℕ)
131129, 130syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) − 1) ∈ ℕ)
132131, 120syl6eleq 2740 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) − 1) ∈ (ℤ‘1))
133 peano2zm 11458 . . . . . . . . . . . . . . . . . 18 ((2↑(𝑗 + 1)) ∈ ℤ → ((2↑(𝑗 + 1)) − 1) ∈ ℤ)
134117, 133syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) − 1) ∈ ℤ)
135 peano2nn0 11371 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 + 1) ∈ ℕ0 → ((𝑗 + 1) + 1) ∈ ℕ0)
13675, 135syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ0) → ((𝑗 + 1) + 1) ∈ ℕ0)
137 zexpcl 12915 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℤ ∧ ((𝑗 + 1) + 1) ∈ ℕ0) → (2↑((𝑗 + 1) + 1)) ∈ ℤ)
138115, 136, 137sylancr 696 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ0) → (2↑((𝑗 + 1) + 1)) ∈ ℤ)
139 peano2zm 11458 . . . . . . . . . . . . . . . . . 18 ((2↑((𝑗 + 1) + 1)) ∈ ℤ → ((2↑((𝑗 + 1) + 1)) − 1) ∈ ℤ)
140138, 139syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ0) → ((2↑((𝑗 + 1) + 1)) − 1) ∈ ℤ)
141117zred 11520 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℝ)
142138zred 11520 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ0) → (2↑((𝑗 + 1) + 1)) ∈ ℝ)
143 1red 10093 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ0) → 1 ∈ ℝ)
14475nn0zd 11518 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ0) → (𝑗 + 1) ∈ ℤ)
145 uzid 11740 . . . . . . . . . . . . . . . . . . 19 ((𝑗 + 1) ∈ ℤ → (𝑗 + 1) ∈ (ℤ‘(𝑗 + 1)))
146 peano2uz 11779 . . . . . . . . . . . . . . . . . . 19 ((𝑗 + 1) ∈ (ℤ‘(𝑗 + 1)) → ((𝑗 + 1) + 1) ∈ (ℤ‘(𝑗 + 1)))
147 leexp2a 12956 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℝ ∧ 1 ≤ 2 ∧ ((𝑗 + 1) + 1) ∈ (ℤ‘(𝑗 + 1))) → (2↑(𝑗 + 1)) ≤ (2↑((𝑗 + 1) + 1)))
148122, 123, 147mp3an12 1454 . . . . . . . . . . . . . . . . . . 19 (((𝑗 + 1) + 1) ∈ (ℤ‘(𝑗 + 1)) → (2↑(𝑗 + 1)) ≤ (2↑((𝑗 + 1) + 1)))
149144, 145, 146, 1484syl 19 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) ≤ (2↑((𝑗 + 1) + 1)))
150141, 142, 143, 149lesub1dd 10681 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) − 1) ≤ ((2↑((𝑗 + 1) + 1)) − 1))
151 eluz2 11731 . . . . . . . . . . . . . . . . 17 (((2↑((𝑗 + 1) + 1)) − 1) ∈ (ℤ‘((2↑(𝑗 + 1)) − 1)) ↔ (((2↑(𝑗 + 1)) − 1) ∈ ℤ ∧ ((2↑((𝑗 + 1) + 1)) − 1) ∈ ℤ ∧ ((2↑(𝑗 + 1)) − 1) ≤ ((2↑((𝑗 + 1) + 1)) − 1)))
152134, 140, 150, 151syl3anbrc 1265 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ0) → ((2↑((𝑗 + 1) + 1)) − 1) ∈ (ℤ‘((2↑(𝑗 + 1)) − 1)))
153 elfzuzb 12374 . . . . . . . . . . . . . . . 16 (((2↑(𝑗 + 1)) − 1) ∈ (1...((2↑((𝑗 + 1) + 1)) − 1)) ↔ (((2↑(𝑗 + 1)) − 1) ∈ (ℤ‘1) ∧ ((2↑((𝑗 + 1) + 1)) − 1) ∈ (ℤ‘((2↑(𝑗 + 1)) − 1))))
154132, 152, 153sylanbrc 699 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) − 1) ∈ (1...((2↑((𝑗 + 1) + 1)) − 1)))
155 fzsplit 12405 . . . . . . . . . . . . . . 15 (((2↑(𝑗 + 1)) − 1) ∈ (1...((2↑((𝑗 + 1) + 1)) − 1)) → (1...((2↑((𝑗 + 1) + 1)) − 1)) = ((1...((2↑(𝑗 + 1)) − 1)) ∪ ((((2↑(𝑗 + 1)) − 1) + 1)...((2↑((𝑗 + 1) + 1)) − 1))))
156154, 155syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → (1...((2↑((𝑗 + 1) + 1)) − 1)) = ((1...((2↑(𝑗 + 1)) − 1)) ∪ ((((2↑(𝑗 + 1)) − 1) + 1)...((2↑((𝑗 + 1) + 1)) − 1))))
157 npcan 10328 . . . . . . . . . . . . . . . . 17 (((2↑(𝑗 + 1)) ∈ ℂ ∧ 1 ∈ ℂ) → (((2↑(𝑗 + 1)) − 1) + 1) = (2↑(𝑗 + 1)))
158111, 12, 157sylancl 695 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ0) → (((2↑(𝑗 + 1)) − 1) + 1) = (2↑(𝑗 + 1)))
159158oveq1d 6705 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ0) → ((((2↑(𝑗 + 1)) − 1) + 1)...((2↑((𝑗 + 1) + 1)) − 1)) = ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)))
160159uneq2d 3800 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → ((1...((2↑(𝑗 + 1)) − 1)) ∪ ((((2↑(𝑗 + 1)) − 1) + 1)...((2↑((𝑗 + 1) + 1)) − 1))) = ((1...((2↑(𝑗 + 1)) − 1)) ∪ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))))
161156, 160eqtrd 2685 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → (1...((2↑((𝑗 + 1) + 1)) − 1)) = ((1...((2↑(𝑗 + 1)) − 1)) ∪ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))))
162161fveq2d 6233 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (#‘(1...((2↑((𝑗 + 1) + 1)) − 1))) = (#‘((1...((2↑(𝑗 + 1)) − 1)) ∪ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)))))
163 expp1 12907 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ (𝑗 + 1) ∈ ℕ0) → (2↑((𝑗 + 1) + 1)) = ((2↑(𝑗 + 1)) · 2))
1645, 75, 163sylancr 696 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ0) → (2↑((𝑗 + 1) + 1)) = ((2↑(𝑗 + 1)) · 2))
165111times2d 11314 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) · 2) = ((2↑(𝑗 + 1)) + (2↑(𝑗 + 1))))
166164, 165eqtrd 2685 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ0) → (2↑((𝑗 + 1) + 1)) = ((2↑(𝑗 + 1)) + (2↑(𝑗 + 1))))
167166oveq1d 6705 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → ((2↑((𝑗 + 1) + 1)) − 1) = (((2↑(𝑗 + 1)) + (2↑(𝑗 + 1))) − 1))
168 1cnd 10094 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ0) → 1 ∈ ℂ)
169111, 111, 168addsubd 10451 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → (((2↑(𝑗 + 1)) + (2↑(𝑗 + 1))) − 1) = (((2↑(𝑗 + 1)) − 1) + (2↑(𝑗 + 1))))
170167, 169eqtrd 2685 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → ((2↑((𝑗 + 1) + 1)) − 1) = (((2↑(𝑗 + 1)) − 1) + (2↑(𝑗 + 1))))
171 uztrn 11742 . . . . . . . . . . . . . . . . 17 ((((2↑((𝑗 + 1) + 1)) − 1) ∈ (ℤ‘((2↑(𝑗 + 1)) − 1)) ∧ ((2↑(𝑗 + 1)) − 1) ∈ (ℤ‘1)) → ((2↑((𝑗 + 1) + 1)) − 1) ∈ (ℤ‘1))
172152, 132, 171syl2anc 694 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ0) → ((2↑((𝑗 + 1) + 1)) − 1) ∈ (ℤ‘1))
173172, 120syl6eleqr 2741 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ0) → ((2↑((𝑗 + 1) + 1)) − 1) ∈ ℕ)
174173nnnn0d 11389 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → ((2↑((𝑗 + 1) + 1)) − 1) ∈ ℕ0)
175 hashfz1 13174 . . . . . . . . . . . . . 14 (((2↑((𝑗 + 1) + 1)) − 1) ∈ ℕ0 → (#‘(1...((2↑((𝑗 + 1) + 1)) − 1))) = ((2↑((𝑗 + 1) + 1)) − 1))
176174, 175syl 17 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → (#‘(1...((2↑((𝑗 + 1) + 1)) − 1))) = ((2↑((𝑗 + 1) + 1)) − 1))
177131nnnn0d 11389 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) − 1) ∈ ℕ0)
178 hashfz1 13174 . . . . . . . . . . . . . . 15 (((2↑(𝑗 + 1)) − 1) ∈ ℕ0 → (#‘(1...((2↑(𝑗 + 1)) − 1))) = ((2↑(𝑗 + 1)) − 1))
179177, 178syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → (#‘(1...((2↑(𝑗 + 1)) − 1))) = ((2↑(𝑗 + 1)) − 1))
180179oveq1d 6705 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → ((#‘(1...((2↑(𝑗 + 1)) − 1))) + (2↑(𝑗 + 1))) = (((2↑(𝑗 + 1)) − 1) + (2↑(𝑗 + 1))))
181170, 176, 1803eqtr4d 2695 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (#‘(1...((2↑((𝑗 + 1) + 1)) − 1))) = ((#‘(1...((2↑(𝑗 + 1)) − 1))) + (2↑(𝑗 + 1))))
182110ltm1d 10994 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) − 1) < (2↑(𝑗 + 1)))
183 fzdisj 12406 . . . . . . . . . . . . . 14 (((2↑(𝑗 + 1)) − 1) < (2↑(𝑗 + 1)) → ((1...((2↑(𝑗 + 1)) − 1)) ∩ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) = ∅)
184182, 183syl 17 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → ((1...((2↑(𝑗 + 1)) − 1)) ∩ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) = ∅)
185 hashun 13209 . . . . . . . . . . . . 13 (((1...((2↑(𝑗 + 1)) − 1)) ∈ Fin ∧ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)) ∈ Fin ∧ ((1...((2↑(𝑗 + 1)) − 1)) ∩ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) = ∅) → (#‘((1...((2↑(𝑗 + 1)) − 1)) ∪ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)))) = ((#‘(1...((2↑(𝑗 + 1)) − 1))) + (#‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)))))
186106, 70, 184, 185syl3anc 1366 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (#‘((1...((2↑(𝑗 + 1)) − 1)) ∪ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)))) = ((#‘(1...((2↑(𝑗 + 1)) − 1))) + (#‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)))))
187162, 181, 1863eqtr3d 2693 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → ((#‘(1...((2↑(𝑗 + 1)) − 1))) + (2↑(𝑗 + 1))) = ((#‘(1...((2↑(𝑗 + 1)) − 1))) + (#‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)))))
188109, 111, 114, 187addcanad 10279 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) = (#‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))))
189188oveq1d 6705 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1)))) = ((#‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) · (𝐹‘(2↑(𝑗 + 1)))))
19057adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ∀𝑛 ∈ ℕ0 (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
191 fveq2 6229 . . . . . . . . . . . 12 (𝑛 = (𝑗 + 1) → (𝐺𝑛) = (𝐺‘(𝑗 + 1)))
192 oveq2 6698 . . . . . . . . . . . . 13 (𝑛 = (𝑗 + 1) → (2↑𝑛) = (2↑(𝑗 + 1)))
193192fveq2d 6233 . . . . . . . . . . . . 13 (𝑛 = (𝑗 + 1) → (𝐹‘(2↑𝑛)) = (𝐹‘(2↑(𝑗 + 1))))
194192, 193oveq12d 6708 . . . . . . . . . . . 12 (𝑛 = (𝑗 + 1) → ((2↑𝑛) · (𝐹‘(2↑𝑛))) = ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1)))))
195191, 194eqeq12d 2666 . . . . . . . . . . 11 (𝑛 = (𝑗 + 1) → ((𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))) ↔ (𝐺‘(𝑗 + 1)) = ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1))))))
196195rspcv 3336 . . . . . . . . . 10 ((𝑗 + 1) ∈ ℕ0 → (∀𝑛 ∈ ℕ0 (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))) → (𝐺‘(𝑗 + 1)) = ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1))))))
19775, 190, 196sylc 65 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → (𝐺‘(𝑗 + 1)) = ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1)))))
19886recnd 10106 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → (𝐹‘(2↑(𝑗 + 1))) ∈ ℂ)
199 fsumconst 14566 . . . . . . . . . 10 ((((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)) ∈ Fin ∧ (𝐹‘(2↑(𝑗 + 1))) ∈ ℂ) → Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹‘(2↑(𝑗 + 1))) = ((#‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) · (𝐹‘(2↑(𝑗 + 1)))))
20070, 198, 199syl2anc 694 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹‘(2↑(𝑗 + 1))) = ((#‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) · (𝐹‘(2↑(𝑗 + 1)))))
201189, 197, 2003eqtr4d 2695 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (𝐺‘(𝑗 + 1)) = Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹‘(2↑(𝑗 + 1))))
202105, 201breqtrrd 4713 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘) ≤ (𝐺‘(𝑗 + 1)))
203 elfznn 12408 . . . . . . . . . 10 (𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1)) → 𝑘 ∈ ℕ)
20471, 203, 41syl2an 493 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))) → (𝐹𝑘) ∈ ℝ)
205106, 204fsumrecl 14509 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) ∈ ℝ)
20670, 81fsumrecl 14509 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘) ∈ ℝ)
207 nn0uz 11760 . . . . . . . . . 10 0 = (ℤ‘0)
208 0zd 11427 . . . . . . . . . 10 (𝜑 → 0 ∈ ℤ)
209 simpr 476 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
210 nnexpcl 12913 . . . . . . . . . . . . . 14 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
21173, 209, 210sylancr 696 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
212211nnred 11073 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℝ)
21342adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ)
214 fveq2 6229 . . . . . . . . . . . . . . 15 (𝑘 = (2↑𝑛) → (𝐹𝑘) = (𝐹‘(2↑𝑛)))
215214eleq1d 2715 . . . . . . . . . . . . . 14 (𝑘 = (2↑𝑛) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(2↑𝑛)) ∈ ℝ))
216215rspcv 3336 . . . . . . . . . . . . 13 ((2↑𝑛) ∈ ℕ → (∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ → (𝐹‘(2↑𝑛)) ∈ ℝ))
217211, 213, 216sylc 65 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ0) → (𝐹‘(2↑𝑛)) ∈ ℝ)
218212, 217remulcld 10108 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → ((2↑𝑛) · (𝐹‘(2↑𝑛))) ∈ ℝ)
21956, 218eqeltrd 2730 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) ∈ ℝ)
220207, 208, 219serfre 12870 . . . . . . . . 9 (𝜑 → seq0( + , 𝐺):ℕ0⟶ℝ)
221220ffvelrnda 6399 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (seq0( + , 𝐺)‘𝑗) ∈ ℝ)
222141, 86remulcld 10108 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1)))) ∈ ℝ)
223197, 222eqeltrd 2730 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (𝐺‘(𝑗 + 1)) ∈ ℝ)
224 le2add 10548 . . . . . . . 8 (((Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) ∈ ℝ ∧ Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘) ∈ ℝ) ∧ ((seq0( + , 𝐺)‘𝑗) ∈ ℝ ∧ (𝐺‘(𝑗 + 1)) ∈ ℝ)) → ((Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) ≤ (seq0( + , 𝐺)‘𝑗) ∧ Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘) ≤ (𝐺‘(𝑗 + 1))) → (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) + Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘)) ≤ ((seq0( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1)))))
225205, 206, 221, 223, 224syl22anc 1367 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) ≤ (seq0( + , 𝐺)‘𝑗) ∧ Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘) ≤ (𝐺‘(𝑗 + 1))) → (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) + Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘)) ≤ ((seq0( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1)))))
226202, 225mpan2d 710 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) ≤ (seq0( + , 𝐺)‘𝑗) → (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) + Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘)) ≤ ((seq0( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1)))))
227 eqidd 2652 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))) → (𝐹𝑘) = (𝐹𝑘))
22841recnd 10106 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
22971, 203, 228syl2an 493 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))) → (𝐹𝑘) ∈ ℂ)
230227, 132, 229fsumser 14505 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) = (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)))
231230eqcomd 2657 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) = Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘))
232231breq1d 4695 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑗) ↔ Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) ≤ (seq0( + , 𝐺)‘𝑗)))
233 eqidd 2652 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (1...((2↑((𝑗 + 1) + 1)) − 1))) → (𝐹𝑘) = (𝐹𝑘))
234 elfznn 12408 . . . . . . . . . 10 (𝑘 ∈ (1...((2↑((𝑗 + 1) + 1)) − 1)) → 𝑘 ∈ ℕ)
23571, 234, 228syl2an 493 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (1...((2↑((𝑗 + 1) + 1)) − 1))) → (𝐹𝑘) ∈ ℂ)
236233, 172, 235fsumser 14505 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ (1...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘) = (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)))
237 fzfid 12812 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → (1...((2↑((𝑗 + 1) + 1)) − 1)) ∈ Fin)
238184, 161, 237, 235fsumsplit 14515 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ (1...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘) = (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) + Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘)))
239236, 238eqtr3d 2687 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) = (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) + Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘)))
240 simpr 476 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
241240, 207syl6eleq 2740 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → 𝑗 ∈ (ℤ‘0))
242 seqp1 12856 . . . . . . . 8 (𝑗 ∈ (ℤ‘0) → (seq0( + , 𝐺)‘(𝑗 + 1)) = ((seq0( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))))
243241, 242syl 17 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → (seq0( + , 𝐺)‘(𝑗 + 1)) = ((seq0( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))))
244239, 243breq12d 4698 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) ≤ (seq0( + , 𝐺)‘(𝑗 + 1)) ↔ (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) + Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘)) ≤ ((seq0( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1)))))
245226, 232, 2443imtr4d 283 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → ((seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑗) → (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) ≤ (seq0( + , 𝐺)‘(𝑗 + 1))))
246245expcom 450 . . . 4 (𝑗 ∈ ℕ0 → (𝜑 → ((seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑗) → (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) ≤ (seq0( + , 𝐺)‘(𝑗 + 1)))))
247246a2d 29 . . 3 (𝑗 ∈ ℕ0 → ((𝜑 → (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑗)) → (𝜑 → (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) ≤ (seq0( + , 𝐺)‘(𝑗 + 1)))))
24818, 25, 32, 39, 69, 247nn0ind 11510 . 2 (𝑁 ∈ ℕ0 → (𝜑 → (seq1( + , 𝐹)‘((2↑(𝑁 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑁)))
249248impcom 445 1 ((𝜑𝑁 ∈ ℕ0) → (seq1( + , 𝐹)‘((2↑(𝑁 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  wral 2941  cun 3605  cin 3606  c0 3948   class class class wbr 4685  cfv 5926  (class class class)co 6690  Fincfn 7997  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112  cle 10113  cmin 10304  cn 11058  2c2 11108  0cn0 11330  cz 11415  cuz 11725  ...cfz 12364  seqcseq 12841  cexp 12900  #chash 13157  Σcsu 14460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-ico 12219  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461
This theorem is referenced by:  climcnds  14627
  Copyright terms: Public domain W3C validator