![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > climcl | Structured version Visualization version GIF version |
Description: Closure of the limit of a sequence of complex numbers. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
climcl | ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climrel 14267 | . . . . 5 ⊢ Rel ⇝ | |
2 | 1 | brrelexi 5192 | . . . 4 ⊢ (𝐹 ⇝ 𝐴 → 𝐹 ∈ V) |
3 | eqidd 2652 | . . . 4 ⊢ ((𝐹 ⇝ 𝐴 ∧ 𝑘 ∈ ℤ) → (𝐹‘𝑘) = (𝐹‘𝑘)) | |
4 | 2, 3 | clim 14269 | . . 3 ⊢ (𝐹 ⇝ 𝐴 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥)))) |
5 | 4 | ibi 256 | . 2 ⊢ (𝐹 ⇝ 𝐴 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥))) |
6 | 5 | simpld 474 | 1 ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2030 ∀wral 2941 ∃wrex 2942 Vcvv 3231 class class class wbr 4685 ‘cfv 5926 (class class class)co 6690 ℂcc 9972 < clt 10112 − cmin 10304 ℤcz 11415 ℤ≥cuz 11725 ℝ+crp 11870 abscabs 14018 ⇝ cli 14259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-cnex 10030 ax-resscn 10031 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-fv 5934 df-ov 6693 df-neg 10307 df-z 11416 df-uz 11726 df-clim 14263 |
This theorem is referenced by: rlimclim 14321 climrlim2 14322 climuni 14327 fclim 14328 climeu 14330 climreu 14331 2clim 14347 climcn1lem 14377 climadd 14406 climmul 14407 climsub 14408 climaddc2 14410 climcau 14445 clim2div 14665 ntrivcvgtail 14676 ntrivcvgmullem 14677 mbflim 23480 ulmcau 24194 emcllem6 24772 dchrmusum2 25228 dchrvmasumiflem1 25235 dchrvmasumiflem2 25236 dchrisum0lem1b 25249 dchrmusumlem 25256 iprodefisum 31753 climrec 40153 climexp 40155 climsuse 40158 climneg 40160 climdivf 40162 climleltrp 40226 climuzlem 40293 climxlim2lem 40389 climxlim2 40390 sge0isum 40962 |
Copyright terms: Public domain | W3C validator |