Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climaddf Structured version   Visualization version   GIF version

 Description: A version of climadd 14581 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
climaddf.10 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
climaddf.11 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
climaddf.12 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))
Assertion
Ref Expression
climaddf (𝜑𝐻 ⇝ (𝐴 + 𝐵))
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝐻(𝑘)   𝑀(𝑘)   𝑋(𝑘)

Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climaddf.5 . 2 𝑍 = (ℤ𝑀)
2 climaddf.6 . 2 (𝜑𝑀 ∈ ℤ)
6 climaddf.1 . . . . 5 𝑘𝜑
7 nfv 1992 . . . . 5 𝑘 𝑗𝑍
86, 7nfan 1977 . . . 4 𝑘(𝜑𝑗𝑍)
9 climaddf.2 . . . . . 6 𝑘𝐹
10 nfcv 2902 . . . . . 6 𝑘𝑗
119, 10nffv 6360 . . . . 5 𝑘(𝐹𝑗)
1211nfel1 2917 . . . 4 𝑘(𝐹𝑗) ∈ ℂ
138, 12nfim 1974 . . 3 𝑘((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℂ)
14 eleq1w 2822 . . . . 5 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
1514anbi2d 742 . . . 4 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
16 fveq2 6353 . . . . 5 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
1716eleq1d 2824 . . . 4 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑗) ∈ ℂ))
1815, 17imbi12d 333 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ) ↔ ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℂ)))
19 climaddf.10 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
2013, 18, 19chvar 2407 . 2 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℂ)
21 climaddf.3 . . . . . 6 𝑘𝐺
2221, 10nffv 6360 . . . . 5 𝑘(𝐺𝑗)
2322nfel1 2917 . . . 4 𝑘(𝐺𝑗) ∈ ℂ
248, 23nfim 1974 . . 3 𝑘((𝜑𝑗𝑍) → (𝐺𝑗) ∈ ℂ)
25 fveq2 6353 . . . . 5 (𝑘 = 𝑗 → (𝐺𝑘) = (𝐺𝑗))
2625eleq1d 2824 . . . 4 (𝑘 = 𝑗 → ((𝐺𝑘) ∈ ℂ ↔ (𝐺𝑗) ∈ ℂ))
2715, 26imbi12d 333 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ) ↔ ((𝜑𝑗𝑍) → (𝐺𝑗) ∈ ℂ)))
28 climaddf.11 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
2924, 27, 28chvar 2407 . 2 ((𝜑𝑗𝑍) → (𝐺𝑗) ∈ ℂ)
30 climaddf.4 . . . . . 6 𝑘𝐻
3130, 10nffv 6360 . . . . 5 𝑘(𝐻𝑗)
32 nfcv 2902 . . . . . 6 𝑘 +
3311, 32, 22nfov 6840 . . . . 5 𝑘((𝐹𝑗) + (𝐺𝑗))
3431, 33nfeq 2914 . . . 4 𝑘(𝐻𝑗) = ((𝐹𝑗) + (𝐺𝑗))
358, 34nfim 1974 . . 3 𝑘((𝜑𝑗𝑍) → (𝐻𝑗) = ((𝐹𝑗) + (𝐺𝑗)))
36 fveq2 6353 . . . . 5 (𝑘 = 𝑗 → (𝐻𝑘) = (𝐻𝑗))
3716, 25oveq12d 6832 . . . . 5 (𝑘 = 𝑗 → ((𝐹𝑘) + (𝐺𝑘)) = ((𝐹𝑗) + (𝐺𝑗)))
3836, 37eqeq12d 2775 . . . 4 (𝑘 = 𝑗 → ((𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)) ↔ (𝐻𝑗) = ((𝐹𝑗) + (𝐺𝑗))))
3915, 38imbi12d 333 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘))) ↔ ((𝜑𝑗𝑍) → (𝐻𝑗) = ((𝐹𝑗) + (𝐺𝑗)))))
40 climaddf.12 . . 3 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))
4135, 39, 40chvar 2407 . 2 ((𝜑𝑗𝑍) → (𝐻𝑗) = ((𝐹𝑗) + (𝐺𝑗)))
421, 2, 3, 4, 5, 20, 29, 41climadd 14581 1 (𝜑𝐻 ⇝ (𝐴 + 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1632  Ⅎwnf 1857   ∈ wcel 2139  Ⅎwnfc 2889   class class class wbr 4804  ‘cfv 6049  (class class class)co 6814  ℂcc 10146   + caddc 10151  ℤcz 11589  ℤ≥cuz 11899   ⇝ cli 14434 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-sup 8515  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-n0 11505  df-z 11590  df-uz 11900  df-rp 12046  df-seq 13016  df-exp 13075  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-clim 14438 This theorem is referenced by:  fourierdlem112  40956
 Copyright terms: Public domain W3C validator