![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climaddf | Structured version Visualization version GIF version |
Description: A version of climadd 14581 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
climaddf.1 | ⊢ Ⅎ𝑘𝜑 |
climaddf.2 | ⊢ Ⅎ𝑘𝐹 |
climaddf.3 | ⊢ Ⅎ𝑘𝐺 |
climaddf.4 | ⊢ Ⅎ𝑘𝐻 |
climaddf.5 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climaddf.6 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climaddf.7 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
climaddf.8 | ⊢ (𝜑 → 𝐻 ∈ 𝑋) |
climaddf.9 | ⊢ (𝜑 → 𝐺 ⇝ 𝐵) |
climaddf.10 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
climaddf.11 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) |
climaddf.12 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) |
Ref | Expression |
---|---|
climaddf | ⊢ (𝜑 → 𝐻 ⇝ (𝐴 + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climaddf.5 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climaddf.6 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | climaddf.7 | . 2 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
4 | climaddf.8 | . 2 ⊢ (𝜑 → 𝐻 ∈ 𝑋) | |
5 | climaddf.9 | . 2 ⊢ (𝜑 → 𝐺 ⇝ 𝐵) | |
6 | climaddf.1 | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
7 | nfv 1992 | . . . . 5 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑍 | |
8 | 6, 7 | nfan 1977 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
9 | climaddf.2 | . . . . . 6 ⊢ Ⅎ𝑘𝐹 | |
10 | nfcv 2902 | . . . . . 6 ⊢ Ⅎ𝑘𝑗 | |
11 | 9, 10 | nffv 6360 | . . . . 5 ⊢ Ⅎ𝑘(𝐹‘𝑗) |
12 | 11 | nfel1 2917 | . . . 4 ⊢ Ⅎ𝑘(𝐹‘𝑗) ∈ ℂ |
13 | 8, 12 | nfim 1974 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℂ) |
14 | eleq1w 2822 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) | |
15 | 14 | anbi2d 742 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
16 | fveq2 6353 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
17 | 16 | eleq1d 2824 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑗) ∈ ℂ)) |
18 | 15, 17 | imbi12d 333 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℂ))) |
19 | climaddf.10 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
20 | 13, 18, 19 | chvar 2407 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℂ) |
21 | climaddf.3 | . . . . . 6 ⊢ Ⅎ𝑘𝐺 | |
22 | 21, 10 | nffv 6360 | . . . . 5 ⊢ Ⅎ𝑘(𝐺‘𝑗) |
23 | 22 | nfel1 2917 | . . . 4 ⊢ Ⅎ𝑘(𝐺‘𝑗) ∈ ℂ |
24 | 8, 23 | nfim 1974 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) ∈ ℂ) |
25 | fveq2 6353 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐺‘𝑘) = (𝐺‘𝑗)) | |
26 | 25 | eleq1d 2824 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐺‘𝑘) ∈ ℂ ↔ (𝐺‘𝑗) ∈ ℂ)) |
27 | 15, 26 | imbi12d 333 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) ∈ ℂ))) |
28 | climaddf.11 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) | |
29 | 24, 27, 28 | chvar 2407 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) ∈ ℂ) |
30 | climaddf.4 | . . . . . 6 ⊢ Ⅎ𝑘𝐻 | |
31 | 30, 10 | nffv 6360 | . . . . 5 ⊢ Ⅎ𝑘(𝐻‘𝑗) |
32 | nfcv 2902 | . . . . . 6 ⊢ Ⅎ𝑘 + | |
33 | 11, 32, 22 | nfov 6840 | . . . . 5 ⊢ Ⅎ𝑘((𝐹‘𝑗) + (𝐺‘𝑗)) |
34 | 31, 33 | nfeq 2914 | . . . 4 ⊢ Ⅎ𝑘(𝐻‘𝑗) = ((𝐹‘𝑗) + (𝐺‘𝑗)) |
35 | 8, 34 | nfim 1974 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = ((𝐹‘𝑗) + (𝐺‘𝑗))) |
36 | fveq2 6353 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐻‘𝑘) = (𝐻‘𝑗)) | |
37 | 16, 25 | oveq12d 6832 | . . . . 5 ⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) + (𝐺‘𝑘)) = ((𝐹‘𝑗) + (𝐺‘𝑗))) |
38 | 36, 37 | eqeq12d 2775 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐻‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘)) ↔ (𝐻‘𝑗) = ((𝐹‘𝑗) + (𝐺‘𝑗)))) |
39 | 15, 38 | imbi12d 333 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = ((𝐹‘𝑗) + (𝐺‘𝑗))))) |
40 | climaddf.12 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) | |
41 | 35, 39, 40 | chvar 2407 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = ((𝐹‘𝑗) + (𝐺‘𝑗))) |
42 | 1, 2, 3, 4, 5, 20, 29, 41 | climadd 14581 | 1 ⊢ (𝜑 → 𝐻 ⇝ (𝐴 + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 Ⅎwnf 1857 ∈ wcel 2139 Ⅎwnfc 2889 class class class wbr 4804 ‘cfv 6049 (class class class)co 6814 ℂcc 10146 + caddc 10151 ℤcz 11589 ℤ≥cuz 11899 ⇝ cli 14434 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-pre-sup 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-sup 8515 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-2 11291 df-3 11292 df-n0 11505 df-z 11590 df-uz 11900 df-rp 12046 df-seq 13016 df-exp 13075 df-cj 14058 df-re 14059 df-im 14060 df-sqrt 14194 df-abs 14195 df-clim 14438 |
This theorem is referenced by: fourierdlem112 40956 |
Copyright terms: Public domain | W3C validator |