MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clim2div Structured version   Visualization version   GIF version

Theorem clim2div 14665
Description: The limit of an infinite product with an initial segment removed. (Contributed by Scott Fenton, 20-Dec-2017.)
Hypotheses
Ref Expression
clim2div.1 𝑍 = (ℤ𝑀)
clim2div.2 (𝜑𝑁𝑍)
clim2div.3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
clim2div.4 (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝐴)
clim2div.5 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ≠ 0)
Assertion
Ref Expression
clim2div (𝜑 → seq(𝑁 + 1)( · , 𝐹) ⇝ (𝐴 / (seq𝑀( · , 𝐹)‘𝑁)))
Distinct variable groups:   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁   𝑘,𝑍
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem clim2div
Dummy variables 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2651 . . 3 (ℤ‘(𝑁 + 1)) = (ℤ‘(𝑁 + 1))
2 clim2div.2 . . . . 5 (𝜑𝑁𝑍)
3 eluzelz 11735 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
4 clim2div.1 . . . . . 6 𝑍 = (ℤ𝑀)
53, 4eleq2s 2748 . . . . 5 (𝑁𝑍𝑁 ∈ ℤ)
62, 5syl 17 . . . 4 (𝜑𝑁 ∈ ℤ)
76peano2zd 11523 . . 3 (𝜑 → (𝑁 + 1) ∈ ℤ)
8 clim2div.4 . . 3 (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝐴)
9 eluzel2 11730 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
109, 4eleq2s 2748 . . . . . . 7 (𝑁𝑍𝑀 ∈ ℤ)
112, 10syl 17 . . . . . 6 (𝜑𝑀 ∈ ℤ)
12 clim2div.3 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
134, 11, 12prodf 14663 . . . . 5 (𝜑 → seq𝑀( · , 𝐹):𝑍⟶ℂ)
1413, 2ffvelrnd 6400 . . . 4 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ∈ ℂ)
15 clim2div.5 . . . 4 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ≠ 0)
1614, 15reccld 10832 . . 3 (𝜑 → (1 / (seq𝑀( · , 𝐹)‘𝑁)) ∈ ℂ)
17 seqex 12843 . . . 4 seq(𝑁 + 1)( · , 𝐹) ∈ V
1817a1i 11 . . 3 (𝜑 → seq(𝑁 + 1)( · , 𝐹) ∈ V)
192, 4syl6eleq 2740 . . . . . . 7 (𝜑𝑁 ∈ (ℤ𝑀))
20 peano2uz 11779 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
2119, 20syl 17 . . . . . 6 (𝜑 → (𝑁 + 1) ∈ (ℤ𝑀))
2221, 4syl6eleqr 2741 . . . . 5 (𝜑 → (𝑁 + 1) ∈ 𝑍)
234uztrn2 11743 . . . . 5 (((𝑁 + 1) ∈ 𝑍𝑗 ∈ (ℤ‘(𝑁 + 1))) → 𝑗𝑍)
2422, 23sylan 487 . . . 4 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → 𝑗𝑍)
2513ffvelrnda 6399 . . . 4 ((𝜑𝑗𝑍) → (seq𝑀( · , 𝐹)‘𝑗) ∈ ℂ)
2624, 25syldan 486 . . 3 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( · , 𝐹)‘𝑗) ∈ ℂ)
27 mulcl 10058 . . . . . . . 8 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 · 𝑥) ∈ ℂ)
2827adantl 481 . . . . . . 7 (((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ)
29 mulass 10062 . . . . . . . 8 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑘 · 𝑥) · 𝑦) = (𝑘 · (𝑥 · 𝑦)))
3029adantl 481 . . . . . . 7 (((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑘 · 𝑥) · 𝑦) = (𝑘 · (𝑥 · 𝑦)))
31 simpr 476 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → 𝑗 ∈ (ℤ‘(𝑁 + 1)))
3219adantr 480 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ (ℤ𝑀))
33 elfzuz 12376 . . . . . . . . . 10 (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (ℤ𝑀))
3433, 4syl6eleqr 2741 . . . . . . . . 9 (𝑘 ∈ (𝑀...𝑗) → 𝑘𝑍)
3534, 12sylan2 490 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℂ)
3635adantlr 751 . . . . . . 7 (((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℂ)
3728, 30, 31, 32, 36seqsplit 12874 . . . . . 6 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( · , 𝐹)‘𝑗) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑗)))
3837eqcomd 2657 . . . . 5 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑗)) = (seq𝑀( · , 𝐹)‘𝑗))
3914adantr 480 . . . . . 6 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( · , 𝐹)‘𝑁) ∈ ℂ)
404uztrn2 11743 . . . . . . . . . 10 (((𝑁 + 1) ∈ 𝑍𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘𝑍)
4122, 40sylan 487 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘𝑍)
4241, 12syldan 486 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝐹𝑘) ∈ ℂ)
431, 7, 42prodf 14663 . . . . . . 7 (𝜑 → seq(𝑁 + 1)( · , 𝐹):(ℤ‘(𝑁 + 1))⟶ℂ)
4443ffvelrnda 6399 . . . . . 6 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( · , 𝐹)‘𝑗) ∈ ℂ)
4515adantr 480 . . . . . 6 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( · , 𝐹)‘𝑁) ≠ 0)
4626, 39, 44, 45divmuld 10861 . . . . 5 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (((seq𝑀( · , 𝐹)‘𝑗) / (seq𝑀( · , 𝐹)‘𝑁)) = (seq(𝑁 + 1)( · , 𝐹)‘𝑗) ↔ ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑗)) = (seq𝑀( · , 𝐹)‘𝑗)))
4738, 46mpbird 247 . . . 4 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → ((seq𝑀( · , 𝐹)‘𝑗) / (seq𝑀( · , 𝐹)‘𝑁)) = (seq(𝑁 + 1)( · , 𝐹)‘𝑗))
4826, 39, 45divrec2d 10843 . . . 4 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → ((seq𝑀( · , 𝐹)‘𝑗) / (seq𝑀( · , 𝐹)‘𝑁)) = ((1 / (seq𝑀( · , 𝐹)‘𝑁)) · (seq𝑀( · , 𝐹)‘𝑗)))
4947, 48eqtr3d 2687 . . 3 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( · , 𝐹)‘𝑗) = ((1 / (seq𝑀( · , 𝐹)‘𝑁)) · (seq𝑀( · , 𝐹)‘𝑗)))
501, 7, 8, 16, 18, 26, 49climmulc2 14411 . 2 (𝜑 → seq(𝑁 + 1)( · , 𝐹) ⇝ ((1 / (seq𝑀( · , 𝐹)‘𝑁)) · 𝐴))
51 climcl 14274 . . . 4 (seq𝑀( · , 𝐹) ⇝ 𝐴𝐴 ∈ ℂ)
528, 51syl 17 . . 3 (𝜑𝐴 ∈ ℂ)
5352, 14, 15divrec2d 10843 . 2 (𝜑 → (𝐴 / (seq𝑀( · , 𝐹)‘𝑁)) = ((1 / (seq𝑀( · , 𝐹)‘𝑁)) · 𝐴))
5450, 53breqtrrd 4713 1 (𝜑 → seq(𝑁 + 1)( · , 𝐹) ⇝ (𝐴 / (seq𝑀( · , 𝐹)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  Vcvv 3231   class class class wbr 4685  cfv 5926  (class class class)co 6690  cc 9972  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   / cdiv 10722  cz 11415  cuz 11725  ...cfz 12364  seqcseq 12841  cli 14259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263
This theorem is referenced by:  ntrivcvgtail  14676
  Copyright terms: Public domain W3C validator