Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clim2d Structured version   Visualization version   GIF version

Theorem clim2d 40223
 Description: The limit of complex number sequence 𝐹 is eventually approximated. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
clim2d.k 𝑘𝜑
clim2d.f 𝑘𝐹
clim2d.m (𝜑𝑀 ∈ ℤ)
clim2d.z 𝑍 = (ℤ𝑀)
clim2d.c (𝜑𝐹𝐴)
clim2d.b ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
clim2d.x (𝜑𝑋 ∈ ℝ+)
Assertion
Ref Expression
clim2d (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑋))
Distinct variable groups:   𝐴,𝑗,𝑘   𝑗,𝐹   𝑗,𝑀   𝑗,𝑋,𝑘   𝑗,𝑍,𝑘   𝜑,𝑗
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑗,𝑘)   𝐹(𝑘)   𝑀(𝑘)

Proof of Theorem clim2d
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 clim2d.x . 2 (𝜑𝑋 ∈ ℝ+)
2 clim2d.c . . . 4 (𝜑𝐹𝐴)
3 clim2d.k . . . . 5 𝑘𝜑
4 clim2d.f . . . . 5 𝑘𝐹
5 clim2d.z . . . . 5 𝑍 = (ℤ𝑀)
6 clim2d.m . . . . 5 (𝜑𝑀 ∈ ℤ)
7 climrel 14267 . . . . . . 7 Rel ⇝
87a1i 11 . . . . . 6 (𝜑 → Rel ⇝ )
9 brrelex 5190 . . . . . 6 ((Rel ⇝ ∧ 𝐹𝐴) → 𝐹 ∈ V)
108, 2, 9syl2anc 694 . . . . 5 (𝜑𝐹 ∈ V)
11 clim2d.b . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
123, 4, 5, 6, 10, 11clim2f2 40220 . . . 4 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥))))
132, 12mpbid 222 . . 3 (𝜑 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)))
1413simprd 478 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥))
15 breq2 4689 . . . . . 6 (𝑥 = 𝑋 → ((abs‘(𝐵𝐴)) < 𝑥 ↔ (abs‘(𝐵𝐴)) < 𝑋))
1615anbi2d 740 . . . . 5 (𝑥 = 𝑋 → ((𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥) ↔ (𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑋)))
1716ralbidv 3015 . . . 4 (𝑥 = 𝑋 → (∀𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑋)))
1817rexbidv 3081 . . 3 (𝑥 = 𝑋 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑋)))
1918rspcva 3338 . 2 ((𝑋 ∈ ℝ+ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑋))
201, 14, 19syl2anc 694 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1523  Ⅎwnf 1748   ∈ wcel 2030  Ⅎwnfc 2780  ∀wral 2941  ∃wrex 2942  Vcvv 3231   class class class wbr 4685  Rel wrel 5148  ‘cfv 5926  (class class class)co 6690  ℂcc 9972   < clt 10112   − cmin 10304  ℤcz 11415  ℤ≥cuz 11725  ℝ+crp 11870  abscabs 14018   ⇝ cli 14259 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-pre-lttri 10048  ax-pre-lttrn 10049 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-neg 10307  df-z 11416  df-uz 11726  df-clim 14263 This theorem is referenced by:  climleltrp  40226
 Copyright terms: Public domain W3C validator