Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cleq2lem Structured version   Visualization version   GIF version

Theorem cleq2lem 38440
Description: Equality implies bijection. (Contributed by RP, 24-Jul-2020.)
Hypothesis
Ref Expression
cleq2lem.b (𝐴 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
cleq2lem (𝐴 = 𝐵 → ((𝑅𝐴𝜑) ↔ (𝑅𝐵𝜓)))

Proof of Theorem cleq2lem
StepHypRef Expression
1 sseq2 3776 . 2 (𝐴 = 𝐵 → (𝑅𝐴𝑅𝐵))
2 cleq2lem.b . 2 (𝐴 = 𝐵 → (𝜑𝜓))
31, 2anbi12d 616 1 (𝐴 = 𝐵 → ((𝑅𝐴𝜑) ↔ (𝑅𝐵𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wss 3723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-ext 2751
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-in 3730  df-ss 3737
This theorem is referenced by:  cbvcllem  38441  clublem  38443  rclexi  38448  rtrclex  38450  rtrclexi  38454  clrellem  38455  clcnvlem  38456  trcleq2lemRP  38463  dfrcl2  38492  brtrclfv2  38545  clsk1indlem1  38869
  Copyright terms: Public domain W3C validator