 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cleljust Structured version   Visualization version   GIF version

Theorem cleljust 2152
 Description: When the class variables in definition df-clel 2766 are replaced with setvar variables, this theorem of predicate calculus is the result. This theorem provides part of the justification for the consistency of that definition, which "overloads" the setvar variables in wel 2145 with the class variables in wcel 2144. (Contributed by NM, 28-Jan-2004.) Revised to use equsexvw 2089 in order to remove dependencies on ax-10 2173, ax-12 2202, ax-13 2407. Note that there is no DV condition on 𝑥, 𝑦, that is, on the variables of the left-hand side. (Revised by BJ, 29-Dec-2020.)
Assertion
Ref Expression
cleljust (𝑥𝑦 ↔ ∃𝑧(𝑧 = 𝑥𝑧𝑦))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧

Proof of Theorem cleljust
StepHypRef Expression
1 elequ1 2151 . . 3 (𝑧 = 𝑥 → (𝑧𝑦𝑥𝑦))
21equsexvw 2089 . 2 (∃𝑧(𝑧 = 𝑥𝑧𝑦) ↔ 𝑥𝑦)
32bicomi 214 1 (𝑥𝑦 ↔ ∃𝑧(𝑧 = 𝑥𝑧𝑦))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ wa 382  ∃wex 1851 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146 This theorem depends on definitions:  df-bi 197  df-an 383  df-ex 1852 This theorem is referenced by:  bj-dfclel  33212
 Copyright terms: Public domain W3C validator