![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clel5 | Structured version Visualization version GIF version |
Description: Alternate definition of class membership: a class 𝑋 is an element of another class 𝐴 iff there is an element of 𝐴 equal to 𝑋. (Contributed by AV, 13-Nov-2020.) |
Ref | Expression |
---|---|
clel5 | ⊢ (𝑋 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑋 = 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝑋 ∈ 𝐴 → 𝑋 ∈ 𝐴) | |
2 | eqeq2 2662 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑋 = 𝑥 ↔ 𝑋 = 𝑋)) | |
3 | 2 | adantl 481 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋) → (𝑋 = 𝑥 ↔ 𝑋 = 𝑋)) |
4 | eqidd 2652 | . . 3 ⊢ (𝑋 ∈ 𝐴 → 𝑋 = 𝑋) | |
5 | 1, 3, 4 | rspcedvd 3348 | . 2 ⊢ (𝑋 ∈ 𝐴 → ∃𝑥 ∈ 𝐴 𝑋 = 𝑥) |
6 | eleq1a 2725 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝑋 = 𝑥 → 𝑋 ∈ 𝐴)) | |
7 | 6 | rexlimiv 3056 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝑋 = 𝑥 → 𝑋 ∈ 𝐴) |
8 | 5, 7 | impbii 199 | 1 ⊢ (𝑋 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑋 = 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1523 ∈ wcel 2030 ∃wrex 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-v 3233 |
This theorem is referenced by: dfss5 3897 disjunsn 29533 |
Copyright terms: Public domain | W3C validator |