MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldval Structured version   Visualization version   GIF version

Theorem cldval 21029
Description: The set of closed sets of a topology. (Note that the set of open sets is just the topology itself, so we don't have a separate definition.) (Contributed by NM, 2-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
cldval.1 𝑋 = 𝐽
Assertion
Ref Expression
cldval (𝐽 ∈ Top → (Clsd‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽})
Distinct variable groups:   𝑥,𝐽   𝑥,𝑋

Proof of Theorem cldval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 cldval.1 . . . 4 𝑋 = 𝐽
21topopn 20913 . . 3 (𝐽 ∈ Top → 𝑋𝐽)
3 pwexg 4999 . . 3 (𝑋𝐽 → 𝒫 𝑋 ∈ V)
4 rabexg 4963 . . 3 (𝒫 𝑋 ∈ V → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽} ∈ V)
52, 3, 43syl 18 . 2 (𝐽 ∈ Top → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽} ∈ V)
6 unieq 4596 . . . . . 6 (𝑗 = 𝐽 𝑗 = 𝐽)
76, 1syl6eqr 2812 . . . . 5 (𝑗 = 𝐽 𝑗 = 𝑋)
87pweqd 4307 . . . 4 (𝑗 = 𝐽 → 𝒫 𝑗 = 𝒫 𝑋)
97difeq1d 3870 . . . . 5 (𝑗 = 𝐽 → ( 𝑗𝑥) = (𝑋𝑥))
10 eleq12 2829 . . . . 5 ((( 𝑗𝑥) = (𝑋𝑥) ∧ 𝑗 = 𝐽) → (( 𝑗𝑥) ∈ 𝑗 ↔ (𝑋𝑥) ∈ 𝐽))
119, 10mpancom 706 . . . 4 (𝑗 = 𝐽 → (( 𝑗𝑥) ∈ 𝑗 ↔ (𝑋𝑥) ∈ 𝐽))
128, 11rabeqbidv 3335 . . 3 (𝑗 = 𝐽 → {𝑥 ∈ 𝒫 𝑗 ∣ ( 𝑗𝑥) ∈ 𝑗} = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽})
13 df-cld 21025 . . 3 Clsd = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 𝑗 ∣ ( 𝑗𝑥) ∈ 𝑗})
1412, 13fvmptg 6442 . 2 ((𝐽 ∈ Top ∧ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽} ∈ V) → (Clsd‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽})
155, 14mpdan 705 1 (𝐽 ∈ Top → (Clsd‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1632  wcel 2139  {crab 3054  Vcvv 3340  cdif 3712  𝒫 cpw 4302   cuni 4588  cfv 6049  Topctop 20900  Clsdccld 21022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-iota 6012  df-fun 6051  df-fv 6057  df-top 20901  df-cld 21025
This theorem is referenced by:  iscld  21033  mretopd  21098
  Copyright terms: Public domain W3C validator