Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cldregopn Structured version   Visualization version   GIF version

Theorem cldregopn 32632
Description: A set if regularly open iff it is the interior of some closed set. (Contributed by Jeff Hankins, 27-Sep-2009.)
Hypothesis
Ref Expression
opnregcld.1 𝑋 = 𝐽
Assertion
Ref Expression
cldregopn ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴 ↔ ∃𝑐 ∈ (Clsd‘𝐽)𝐴 = ((int‘𝐽)‘𝑐)))
Distinct variable groups:   𝐴,𝑐   𝐽,𝑐   𝑋,𝑐

Proof of Theorem cldregopn
StepHypRef Expression
1 opnregcld.1 . . . . 5 𝑋 = 𝐽
21clscld 21053 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ∈ (Clsd‘𝐽))
3 eqcom 2767 . . . . 5 (((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴𝐴 = ((int‘𝐽)‘((cls‘𝐽)‘𝐴)))
43biimpi 206 . . . 4 (((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴𝐴 = ((int‘𝐽)‘((cls‘𝐽)‘𝐴)))
5 fveq2 6352 . . . . . 6 (𝑐 = ((cls‘𝐽)‘𝐴) → ((int‘𝐽)‘𝑐) = ((int‘𝐽)‘((cls‘𝐽)‘𝐴)))
65eqeq2d 2770 . . . . 5 (𝑐 = ((cls‘𝐽)‘𝐴) → (𝐴 = ((int‘𝐽)‘𝑐) ↔ 𝐴 = ((int‘𝐽)‘((cls‘𝐽)‘𝐴))))
76rspcev 3449 . . . 4 ((((cls‘𝐽)‘𝐴) ∈ (Clsd‘𝐽) ∧ 𝐴 = ((int‘𝐽)‘((cls‘𝐽)‘𝐴))) → ∃𝑐 ∈ (Clsd‘𝐽)𝐴 = ((int‘𝐽)‘𝑐))
82, 4, 7syl2an 495 . . 3 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴) → ∃𝑐 ∈ (Clsd‘𝐽)𝐴 = ((int‘𝐽)‘𝑐))
98ex 449 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴 → ∃𝑐 ∈ (Clsd‘𝐽)𝐴 = ((int‘𝐽)‘𝑐)))
10 cldrcl 21032 . . . . . . 7 (𝑐 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
111cldss 21035 . . . . . . 7 (𝑐 ∈ (Clsd‘𝐽) → 𝑐𝑋)
121ntrss2 21063 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑐𝑋) → ((int‘𝐽)‘𝑐) ⊆ 𝑐)
1310, 11, 12syl2anc 696 . . . . . . . 8 (𝑐 ∈ (Clsd‘𝐽) → ((int‘𝐽)‘𝑐) ⊆ 𝑐)
141clsss2 21078 . . . . . . . 8 ((𝑐 ∈ (Clsd‘𝐽) ∧ ((int‘𝐽)‘𝑐) ⊆ 𝑐) → ((cls‘𝐽)‘((int‘𝐽)‘𝑐)) ⊆ 𝑐)
1513, 14mpdan 705 . . . . . . 7 (𝑐 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘((int‘𝐽)‘𝑐)) ⊆ 𝑐)
161ntrss 21061 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑐𝑋 ∧ ((cls‘𝐽)‘((int‘𝐽)‘𝑐)) ⊆ 𝑐) → ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐))) ⊆ ((int‘𝐽)‘𝑐))
1710, 11, 15, 16syl3anc 1477 . . . . . 6 (𝑐 ∈ (Clsd‘𝐽) → ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐))) ⊆ ((int‘𝐽)‘𝑐))
181ntridm 21074 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑐𝑋) → ((int‘𝐽)‘((int‘𝐽)‘𝑐)) = ((int‘𝐽)‘𝑐))
1910, 11, 18syl2anc 696 . . . . . . 7 (𝑐 ∈ (Clsd‘𝐽) → ((int‘𝐽)‘((int‘𝐽)‘𝑐)) = ((int‘𝐽)‘𝑐))
201ntrss3 21066 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑐𝑋) → ((int‘𝐽)‘𝑐) ⊆ 𝑋)
2110, 11, 20syl2anc 696 . . . . . . . . 9 (𝑐 ∈ (Clsd‘𝐽) → ((int‘𝐽)‘𝑐) ⊆ 𝑋)
221clsss3 21065 . . . . . . . . 9 ((𝐽 ∈ Top ∧ ((int‘𝐽)‘𝑐) ⊆ 𝑋) → ((cls‘𝐽)‘((int‘𝐽)‘𝑐)) ⊆ 𝑋)
2310, 21, 22syl2anc 696 . . . . . . . 8 (𝑐 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘((int‘𝐽)‘𝑐)) ⊆ 𝑋)
241sscls 21062 . . . . . . . . 9 ((𝐽 ∈ Top ∧ ((int‘𝐽)‘𝑐) ⊆ 𝑋) → ((int‘𝐽)‘𝑐) ⊆ ((cls‘𝐽)‘((int‘𝐽)‘𝑐)))
2510, 21, 24syl2anc 696 . . . . . . . 8 (𝑐 ∈ (Clsd‘𝐽) → ((int‘𝐽)‘𝑐) ⊆ ((cls‘𝐽)‘((int‘𝐽)‘𝑐)))
261ntrss 21061 . . . . . . . 8 ((𝐽 ∈ Top ∧ ((cls‘𝐽)‘((int‘𝐽)‘𝑐)) ⊆ 𝑋 ∧ ((int‘𝐽)‘𝑐) ⊆ ((cls‘𝐽)‘((int‘𝐽)‘𝑐))) → ((int‘𝐽)‘((int‘𝐽)‘𝑐)) ⊆ ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐))))
2710, 23, 25, 26syl3anc 1477 . . . . . . 7 (𝑐 ∈ (Clsd‘𝐽) → ((int‘𝐽)‘((int‘𝐽)‘𝑐)) ⊆ ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐))))
2819, 27eqsstr3d 3781 . . . . . 6 (𝑐 ∈ (Clsd‘𝐽) → ((int‘𝐽)‘𝑐) ⊆ ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐))))
2917, 28eqssd 3761 . . . . 5 (𝑐 ∈ (Clsd‘𝐽) → ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐))) = ((int‘𝐽)‘𝑐))
3029adantl 473 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ 𝑐 ∈ (Clsd‘𝐽)) → ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐))) = ((int‘𝐽)‘𝑐))
31 fveq2 6352 . . . . . 6 (𝐴 = ((int‘𝐽)‘𝑐) → ((cls‘𝐽)‘𝐴) = ((cls‘𝐽)‘((int‘𝐽)‘𝑐)))
3231fveq2d 6356 . . . . 5 (𝐴 = ((int‘𝐽)‘𝑐) → ((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐))))
33 id 22 . . . . 5 (𝐴 = ((int‘𝐽)‘𝑐) → 𝐴 = ((int‘𝐽)‘𝑐))
3432, 33eqeq12d 2775 . . . 4 (𝐴 = ((int‘𝐽)‘𝑐) → (((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴 ↔ ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐))) = ((int‘𝐽)‘𝑐)))
3530, 34syl5ibrcom 237 . . 3 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ 𝑐 ∈ (Clsd‘𝐽)) → (𝐴 = ((int‘𝐽)‘𝑐) → ((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴))
3635rexlimdva 3169 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (∃𝑐 ∈ (Clsd‘𝐽)𝐴 = ((int‘𝐽)‘𝑐) → ((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴))
379, 36impbid 202 1 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴 ↔ ∃𝑐 ∈ (Clsd‘𝐽)𝐴 = ((int‘𝐽)‘𝑐)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wrex 3051  wss 3715   cuni 4588  cfv 6049  Topctop 20900  Clsdccld 21022  intcnt 21023  clsccl 21024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-top 20901  df-cld 21025  df-ntr 21026  df-cls 21027
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator