![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cldrcl | Structured version Visualization version GIF version |
Description: Reverse closure of the closed set operation. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
cldrcl | ⊢ (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6381 | . 2 ⊢ (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ dom Clsd) | |
2 | fncld 21028 | . . 3 ⊢ Clsd Fn Top | |
3 | fndm 6151 | . . 3 ⊢ (Clsd Fn Top → dom Clsd = Top) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ dom Clsd = Top |
5 | 1, 4 | syl6eleq 2849 | 1 ⊢ (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 dom cdm 5266 Fn wfn 6044 ‘cfv 6049 Topctop 20900 Clsdccld 21022 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-iota 6012 df-fun 6051 df-fn 6052 df-fv 6057 df-cld 21025 |
This theorem is referenced by: cldss 21035 cldopn 21037 difopn 21040 iincld 21045 uncld 21047 cldcls 21048 clsss2 21078 opncldf3 21092 restcldi 21179 restcldr 21180 paste 21300 connsubclo 21429 txcld 21608 cldregopn 32632 |
Copyright terms: Public domain | W3C validator |