![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cldopn | Structured version Visualization version GIF version |
Description: The complement of a closed set is open. (Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
iscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
cldopn | ⊢ (𝑆 ∈ (Clsd‘𝐽) → (𝑋 ∖ 𝑆) ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cldrcl 20953 | . 2 ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | |
2 | iscld.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 2 | iscld 20954 | . . 3 ⊢ (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽))) |
4 | 3 | simplbda 655 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑋 ∖ 𝑆) ∈ 𝐽) |
5 | 1, 4 | mpancom 706 | 1 ⊢ (𝑆 ∈ (Clsd‘𝐽) → (𝑋 ∖ 𝑆) ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1596 ∈ wcel 2103 ∖ cdif 3677 ⊆ wss 3680 ∪ cuni 4544 ‘cfv 6001 Topctop 20821 Clsdccld 20943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-ral 3019 df-rex 3020 df-rab 3023 df-v 3306 df-sbc 3542 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-br 4761 df-opab 4821 df-mpt 4838 df-id 5128 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-iota 5964 df-fun 6003 df-fn 6004 df-fv 6009 df-top 20822 df-cld 20946 |
This theorem is referenced by: difopn 20961 iincld 20966 uncld 20968 iuncld 20972 clsval2 20977 opncldf1 21011 opncldf3 21013 restcld 21099 lecldbas 21146 cnclima 21195 nrmsep2 21283 nrmsep 21284 regsep2 21303 cmpcld 21328 dfconn2 21345 txcld 21529 ptcld 21539 kqcldsat 21659 regr1lem 21665 filconn 21809 cldsubg 22036 limcnlp 23762 dvrec 23838 dvexp3 23861 lhop1lem 23896 abelth 24315 logdmopn 24515 lgamucov 24884 onsucconni 32663 onint1 32675 mblfinlem3 33680 mblfinlem4 33681 ismblfin 33682 dvtanlem 33691 dvasin 33728 dvacos 33729 dvreasin 33730 dvreacos 33731 fourierdlem62 40805 |
Copyright terms: Public domain | W3C validator |