Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldopn Structured version   Visualization version   GIF version

Theorem cldopn 20958
 Description: The complement of a closed set is open. (Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.)
Hypothesis
Ref Expression
iscld.1 𝑋 = 𝐽
Assertion
Ref Expression
cldopn (𝑆 ∈ (Clsd‘𝐽) → (𝑋𝑆) ∈ 𝐽)

Proof of Theorem cldopn
StepHypRef Expression
1 cldrcl 20953 . 2 (𝑆 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
2 iscld.1 . . . 4 𝑋 = 𝐽
32iscld 20954 . . 3 (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆𝑋 ∧ (𝑋𝑆) ∈ 𝐽)))
43simplbda 655 . 2 ((𝐽 ∈ Top ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑋𝑆) ∈ 𝐽)
51, 4mpancom 706 1 (𝑆 ∈ (Clsd‘𝐽) → (𝑋𝑆) ∈ 𝐽)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1596   ∈ wcel 2103   ∖ cdif 3677   ⊆ wss 3680  ∪ cuni 4544  ‘cfv 6001  Topctop 20821  Clsdccld 20943 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-ral 3019  df-rex 3020  df-rab 3023  df-v 3306  df-sbc 3542  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-op 4292  df-uni 4545  df-br 4761  df-opab 4821  df-mpt 4838  df-id 5128  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-iota 5964  df-fun 6003  df-fn 6004  df-fv 6009  df-top 20822  df-cld 20946 This theorem is referenced by:  difopn  20961  iincld  20966  uncld  20968  iuncld  20972  clsval2  20977  opncldf1  21011  opncldf3  21013  restcld  21099  lecldbas  21146  cnclima  21195  nrmsep2  21283  nrmsep  21284  regsep2  21303  cmpcld  21328  dfconn2  21345  txcld  21529  ptcld  21539  kqcldsat  21659  regr1lem  21665  filconn  21809  cldsubg  22036  limcnlp  23762  dvrec  23838  dvexp3  23861  lhop1lem  23896  abelth  24315  logdmopn  24515  lgamucov  24884  onsucconni  32663  onint1  32675  mblfinlem3  33680  mblfinlem4  33681  ismblfin  33682  dvtanlem  33691  dvasin  33728  dvacos  33729  dvreasin  33730  dvreacos  33731  fourierdlem62  40805
 Copyright terms: Public domain W3C validator