![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > clcllaw | Structured version Visualization version GIF version |
Description: Closure of a closed operation. (Contributed by FL, 14-Sep-2010.) (Revised by AV, 21-Jan-2020.) |
Ref | Expression |
---|---|
clcllaw | ⊢ (( ⚬ clLaw 𝑀 ∧ 𝑋 ∈ 𝑀 ∧ 𝑌 ∈ 𝑀) → (𝑋 ⚬ 𝑌) ∈ 𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cllaw 42147 | . . . 4 ⊢ clLaw = {〈𝑜, 𝑚〉 ∣ ∀𝑥 ∈ 𝑚 ∀𝑦 ∈ 𝑚 (𝑥𝑜𝑦) ∈ 𝑚} | |
2 | 1 | bropaex12 5226 | . . 3 ⊢ ( ⚬ clLaw 𝑀 → ( ⚬ ∈ V ∧ 𝑀 ∈ V)) |
3 | iscllaw 42150 | . . . 4 ⊢ (( ⚬ ∈ V ∧ 𝑀 ∈ V) → ( ⚬ clLaw 𝑀 ↔ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) ∈ 𝑀)) | |
4 | ovrspc2v 6712 | . . . . 5 ⊢ (((𝑋 ∈ 𝑀 ∧ 𝑌 ∈ 𝑀) ∧ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) ∈ 𝑀) → (𝑋 ⚬ 𝑌) ∈ 𝑀) | |
5 | 4 | expcom 450 | . . . 4 ⊢ (∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) ∈ 𝑀 → ((𝑋 ∈ 𝑀 ∧ 𝑌 ∈ 𝑀) → (𝑋 ⚬ 𝑌) ∈ 𝑀)) |
6 | 3, 5 | syl6bi 243 | . . 3 ⊢ (( ⚬ ∈ V ∧ 𝑀 ∈ V) → ( ⚬ clLaw 𝑀 → ((𝑋 ∈ 𝑀 ∧ 𝑌 ∈ 𝑀) → (𝑋 ⚬ 𝑌) ∈ 𝑀))) |
7 | 2, 6 | mpcom 38 | . 2 ⊢ ( ⚬ clLaw 𝑀 → ((𝑋 ∈ 𝑀 ∧ 𝑌 ∈ 𝑀) → (𝑋 ⚬ 𝑌) ∈ 𝑀)) |
8 | 7 | 3impib 1281 | 1 ⊢ (( ⚬ clLaw 𝑀 ∧ 𝑋 ∈ 𝑀 ∧ 𝑌 ∈ 𝑀) → (𝑋 ⚬ 𝑌) ∈ 𝑀) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 ∈ wcel 2030 ∀wral 2941 Vcvv 3231 class class class wbr 4685 (class class class)co 6690 clLaw ccllaw 42144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-xp 5149 df-iota 5889 df-fv 5934 df-ov 6693 df-cllaw 42147 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |