![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clatglble | Structured version Visualization version GIF version |
Description: The greatest lower bound is the least element. (Contributed by NM, 5-Dec-2011.) |
Ref | Expression |
---|---|
clatglb.b | ⊢ 𝐵 = (Base‘𝐾) |
clatglb.l | ⊢ ≤ = (le‘𝐾) |
clatglb.g | ⊢ 𝐺 = (glb‘𝐾) |
Ref | Expression |
---|---|
clatglble | ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝑆) → (𝐺‘𝑆) ≤ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clatglb.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
2 | clatglb.l | . 2 ⊢ ≤ = (le‘𝐾) | |
3 | clatglb.g | . 2 ⊢ 𝐺 = (glb‘𝐾) | |
4 | simp1 1129 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝑆) → 𝐾 ∈ CLat) | |
5 | 1, 3 | clatglbcl2 17322 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝑆 ∈ dom 𝐺) |
6 | 5 | 3adant3 1125 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝑆) → 𝑆 ∈ dom 𝐺) |
7 | simp3 1131 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
8 | 1, 2, 3, 4, 6, 7 | glble 17207 | 1 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝑆) → (𝐺‘𝑆) ≤ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1070 = wceq 1630 ∈ wcel 2144 ⊆ wss 3721 class class class wbr 4784 dom cdm 5249 ‘cfv 6031 Basecbs 16063 lecple 16155 glbcglb 17150 CLatccla 17314 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-glb 17182 df-clat 17315 |
This theorem is referenced by: clatleglb 17333 clatglbss 17334 diaglbN 36858 diaintclN 36861 dibglbN 36969 dibintclN 36970 dihglblem2N 37097 dihglblem4 37100 dihglbcpreN 37103 dochvalr 37160 |
Copyright terms: Public domain | W3C validator |