![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > class2set | Structured version Visualization version GIF version |
Description: Construct, from any class 𝐴, a set equal to it when the class exists and equal to the empty set when the class is proper. This theorem shows that the constructed set always exists. (Contributed by NM, 16-Oct-2003.) |
Ref | Expression |
---|---|
class2set | ⊢ {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabexg 4942 | . 2 ⊢ (𝐴 ∈ V → {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} ∈ V) | |
2 | simpl 468 | . . . . 5 ⊢ ((¬ 𝐴 ∈ V ∧ 𝑥 ∈ 𝐴) → ¬ 𝐴 ∈ V) | |
3 | 2 | nrexdv 3148 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ¬ ∃𝑥 ∈ 𝐴 𝐴 ∈ V) |
4 | rabn0 4102 | . . . . 5 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝐴 ∈ V) | |
5 | 4 | necon1bbii 2991 | . . . 4 ⊢ (¬ ∃𝑥 ∈ 𝐴 𝐴 ∈ V ↔ {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} = ∅) |
6 | 3, 5 | sylib 208 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} = ∅) |
7 | 0ex 4921 | . . 3 ⊢ ∅ ∈ V | |
8 | 6, 7 | syl6eqel 2857 | . 2 ⊢ (¬ 𝐴 ∈ V → {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} ∈ V) |
9 | 1, 8 | pm2.61i 176 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1630 ∈ wcel 2144 ∃wrex 3061 {crab 3064 Vcvv 3349 ∅c0 4061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-dif 3724 df-in 3728 df-ss 3735 df-nul 4062 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |