![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cjsub | Structured version Visualization version GIF version |
Description: Complex conjugate distributes over subtraction. (Contributed by NM, 28-Apr-2005.) |
Ref | Expression |
---|---|
cjsub | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 − 𝐵)) = ((∗‘𝐴) − (∗‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negcl 10494 | . . 3 ⊢ (𝐵 ∈ ℂ → -𝐵 ∈ ℂ) | |
2 | cjadd 14101 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ) → (∗‘(𝐴 + -𝐵)) = ((∗‘𝐴) + (∗‘-𝐵))) | |
3 | 1, 2 | sylan2 492 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 + -𝐵)) = ((∗‘𝐴) + (∗‘-𝐵))) |
4 | negsub 10542 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) | |
5 | 4 | fveq2d 6358 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 + -𝐵)) = (∗‘(𝐴 − 𝐵))) |
6 | cjneg 14107 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (∗‘-𝐵) = -(∗‘𝐵)) | |
7 | 6 | adantl 473 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘-𝐵) = -(∗‘𝐵)) |
8 | 7 | oveq2d 6831 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) + (∗‘-𝐵)) = ((∗‘𝐴) + -(∗‘𝐵))) |
9 | cjcl 14065 | . . . 4 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ) | |
10 | cjcl 14065 | . . . 4 ⊢ (𝐵 ∈ ℂ → (∗‘𝐵) ∈ ℂ) | |
11 | negsub 10542 | . . . 4 ⊢ (((∗‘𝐴) ∈ ℂ ∧ (∗‘𝐵) ∈ ℂ) → ((∗‘𝐴) + -(∗‘𝐵)) = ((∗‘𝐴) − (∗‘𝐵))) | |
12 | 9, 10, 11 | syl2an 495 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) + -(∗‘𝐵)) = ((∗‘𝐴) − (∗‘𝐵))) |
13 | 8, 12 | eqtrd 2795 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) + (∗‘-𝐵)) = ((∗‘𝐴) − (∗‘𝐵))) |
14 | 3, 5, 13 | 3eqtr3d 2803 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 − 𝐵)) = ((∗‘𝐴) − (∗‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2140 ‘cfv 6050 (class class class)co 6815 ℂcc 10147 + caddc 10152 − cmin 10479 -cneg 10480 ∗ccj 14056 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-po 5188 df-so 5189 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-div 10898 df-2 11292 df-cj 14059 df-re 14060 df-im 14061 |
This theorem is referenced by: sqabssub 14243 cjcn2 14550 mul4sqlem 15880 dvcjbr 23932 isosctrlem2 24770 atancj 24858 dipsubdi 28035 his2sub2 28281 sigarmf 41568 |
Copyright terms: Public domain | W3C validator |