MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cjreb Structured version   Visualization version   GIF version

Theorem cjreb 13983
Description: A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
cjreb (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (∗‘𝐴) = 𝐴))

Proof of Theorem cjreb
StepHypRef Expression
1 recl 13970 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
21recnd 10181 . . . . 5 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
3 ax-icn 10108 . . . . . 6 i ∈ ℂ
4 imcl 13971 . . . . . . 7 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
54recnd 10181 . . . . . 6 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
6 mulcl 10133 . . . . . 6 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
73, 5, 6sylancr 698 . . . . 5 (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ)
82, 7negsubd 10511 . . . 4 (𝐴 ∈ ℂ → ((ℜ‘𝐴) + -(i · (ℑ‘𝐴))) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
9 mulneg2 10580 . . . . . 6 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · -(ℑ‘𝐴)) = -(i · (ℑ‘𝐴)))
103, 5, 9sylancr 698 . . . . 5 (𝐴 ∈ ℂ → (i · -(ℑ‘𝐴)) = -(i · (ℑ‘𝐴)))
1110oveq2d 6781 . . . 4 (𝐴 ∈ ℂ → ((ℜ‘𝐴) + (i · -(ℑ‘𝐴))) = ((ℜ‘𝐴) + -(i · (ℑ‘𝐴))))
12 remim 13977 . . . 4 (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
138, 11, 123eqtr4rd 2769 . . 3 (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) + (i · -(ℑ‘𝐴))))
14 replim 13976 . . 3 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
1513, 14eqeq12d 2739 . 2 (𝐴 ∈ ℂ → ((∗‘𝐴) = 𝐴 ↔ ((ℜ‘𝐴) + (i · -(ℑ‘𝐴))) = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))))
165negcld 10492 . . . 4 (𝐴 ∈ ℂ → -(ℑ‘𝐴) ∈ ℂ)
17 mulcl 10133 . . . 4 ((i ∈ ℂ ∧ -(ℑ‘𝐴) ∈ ℂ) → (i · -(ℑ‘𝐴)) ∈ ℂ)
183, 16, 17sylancr 698 . . 3 (𝐴 ∈ ℂ → (i · -(ℑ‘𝐴)) ∈ ℂ)
192, 18, 7addcand 10352 . 2 (𝐴 ∈ ℂ → (((ℜ‘𝐴) + (i · -(ℑ‘𝐴))) = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) ↔ (i · -(ℑ‘𝐴)) = (i · (ℑ‘𝐴))))
20 eqcom 2731 . . . 4 (-(ℑ‘𝐴) = (ℑ‘𝐴) ↔ (ℑ‘𝐴) = -(ℑ‘𝐴))
215eqnegd 10859 . . . 4 (𝐴 ∈ ℂ → ((ℑ‘𝐴) = -(ℑ‘𝐴) ↔ (ℑ‘𝐴) = 0))
2220, 21syl5bb 272 . . 3 (𝐴 ∈ ℂ → (-(ℑ‘𝐴) = (ℑ‘𝐴) ↔ (ℑ‘𝐴) = 0))
23 ine0 10578 . . . . . 6 i ≠ 0
243, 23pm3.2i 470 . . . . 5 (i ∈ ℂ ∧ i ≠ 0)
2524a1i 11 . . . 4 (𝐴 ∈ ℂ → (i ∈ ℂ ∧ i ≠ 0))
26 mulcan 10777 . . . 4 ((-(ℑ‘𝐴) ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ ∧ (i ∈ ℂ ∧ i ≠ 0)) → ((i · -(ℑ‘𝐴)) = (i · (ℑ‘𝐴)) ↔ -(ℑ‘𝐴) = (ℑ‘𝐴)))
2716, 5, 25, 26syl3anc 1439 . . 3 (𝐴 ∈ ℂ → ((i · -(ℑ‘𝐴)) = (i · (ℑ‘𝐴)) ↔ -(ℑ‘𝐴) = (ℑ‘𝐴)))
28 reim0b 13979 . . 3 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
2922, 27, 283bitr4d 300 . 2 (𝐴 ∈ ℂ → ((i · -(ℑ‘𝐴)) = (i · (ℑ‘𝐴)) ↔ 𝐴 ∈ ℝ))
3015, 19, 293bitrrd 295 1 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (∗‘𝐴) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1596  wcel 2103  wne 2896  cfv 6001  (class class class)co 6765  cc 10047  cr 10048  0cc0 10049  ici 10051   + caddc 10052   · cmul 10054  cmin 10379  -cneg 10380  ccj 13956  cre 13957  cim 13958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-op 4292  df-uni 4545  df-br 4761  df-opab 4821  df-mpt 4838  df-id 5128  df-po 5139  df-so 5140  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-er 7862  df-en 8073  df-dom 8074  df-sdom 8075  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-2 11192  df-cj 13959  df-re 13960  df-im 13961
This theorem is referenced by:  cjre  13999  cjmulrcl  14004  cjrebi  14034  cjrebd  14062  hire  28181
  Copyright terms: Public domain W3C validator