Users' Mathboxes Mathbox for Paul Chapman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  circum Structured version   Visualization version   GIF version

Theorem circum 31694
Description: The circumference of a circle of radius 𝑅, defined as the limit as 𝑛 ⇝ +∞ of the perimeter of an inscribed n-sided isogons, is ((2 · π) · 𝑅). (Contributed by Paul Chapman, 10-Nov-2012.) (Proof shortened by Mario Carneiro, 21-May-2014.)
Hypotheses
Ref Expression
circum.1 𝐴 = ((2 · π) / 𝑛)
circum.2 𝑃 = (𝑛 ∈ ℕ ↦ ((2 · 𝑛) · (𝑅 · (sin‘(𝐴 / 2)))))
circum.3 𝑅 ∈ ℝ
Assertion
Ref Expression
circum 𝑃 ⇝ ((2 · π) · 𝑅)
Distinct variable group:   𝑅,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝑃(𝑛)

Proof of Theorem circum
Dummy variables 𝑦 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11761 . . . 4 ℕ = (ℤ‘1)
2 1zzd 11446 . . . 4 (⊤ → 1 ∈ ℤ)
3 pirp 24258 . . . . . . . . . 10 π ∈ ℝ+
4 nnrp 11880 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
5 rpdivcl 11894 . . . . . . . . . 10 ((π ∈ ℝ+𝑛 ∈ ℝ+) → (π / 𝑛) ∈ ℝ+)
63, 4, 5sylancr 696 . . . . . . . . 9 (𝑛 ∈ ℕ → (π / 𝑛) ∈ ℝ+)
76rprene0d 11918 . . . . . . . 8 (𝑛 ∈ ℕ → ((π / 𝑛) ∈ ℝ ∧ (π / 𝑛) ≠ 0))
8 eldifsn 4350 . . . . . . . 8 ((π / 𝑛) ∈ (ℝ ∖ {0}) ↔ ((π / 𝑛) ∈ ℝ ∧ (π / 𝑛) ≠ 0))
97, 8sylibr 224 . . . . . . 7 (𝑛 ∈ ℕ → (π / 𝑛) ∈ (ℝ ∖ {0}))
109adantl 481 . . . . . 6 ((⊤ ∧ 𝑛 ∈ ℕ) → (π / 𝑛) ∈ (ℝ ∖ {0}))
11 eqidd 2652 . . . . . 6 (⊤ → (𝑛 ∈ ℕ ↦ (π / 𝑛)) = (𝑛 ∈ ℕ ↦ (π / 𝑛)))
12 eqidd 2652 . . . . . 6 (⊤ → (𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) = (𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)))
13 fveq2 6229 . . . . . . 7 (𝑦 = (π / 𝑛) → (sin‘𝑦) = (sin‘(π / 𝑛)))
14 id 22 . . . . . . 7 (𝑦 = (π / 𝑛) → 𝑦 = (π / 𝑛))
1513, 14oveq12d 6708 . . . . . 6 (𝑦 = (π / 𝑛) → ((sin‘𝑦) / 𝑦) = ((sin‘(π / 𝑛)) / (π / 𝑛)))
1610, 11, 12, 15fmptco 6436 . . . . 5 (⊤ → ((𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) ∘ (𝑛 ∈ ℕ ↦ (π / 𝑛))) = (𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛))))
17 eqid 2651 . . . . . . 7 (𝑛 ∈ ℕ ↦ (π / 𝑛)) = (𝑛 ∈ ℕ ↦ (π / 𝑛))
1817, 9fmpti 6423 . . . . . 6 (𝑛 ∈ ℕ ↦ (π / 𝑛)):ℕ⟶(ℝ ∖ {0})
19 pire 24255 . . . . . . . 8 π ∈ ℝ
2019recni 10090 . . . . . . 7 π ∈ ℂ
21 divcnv 14629 . . . . . . 7 (π ∈ ℂ → (𝑛 ∈ ℕ ↦ (π / 𝑛)) ⇝ 0)
2220, 21mp1i 13 . . . . . 6 (⊤ → (𝑛 ∈ ℕ ↦ (π / 𝑛)) ⇝ 0)
23 sinccvg 31693 . . . . . 6 (((𝑛 ∈ ℕ ↦ (π / 𝑛)):ℕ⟶(ℝ ∖ {0}) ∧ (𝑛 ∈ ℕ ↦ (π / 𝑛)) ⇝ 0) → ((𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) ∘ (𝑛 ∈ ℕ ↦ (π / 𝑛))) ⇝ 1)
2418, 22, 23sylancr 696 . . . . 5 (⊤ → ((𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) ∘ (𝑛 ∈ ℕ ↦ (π / 𝑛))) ⇝ 1)
2516, 24eqbrtrrd 4709 . . . 4 (⊤ → (𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛))) ⇝ 1)
26 2re 11128 . . . . . . . 8 2 ∈ ℝ
2726, 19remulcli 10092 . . . . . . 7 (2 · π) ∈ ℝ
28 circum.3 . . . . . . 7 𝑅 ∈ ℝ
2927, 28remulcli 10092 . . . . . 6 ((2 · π) · 𝑅) ∈ ℝ
3029recni 10090 . . . . 5 ((2 · π) · 𝑅) ∈ ℂ
3130a1i 11 . . . 4 (⊤ → ((2 · π) · 𝑅) ∈ ℂ)
32 circum.2 . . . . . 6 𝑃 = (𝑛 ∈ ℕ ↦ ((2 · 𝑛) · (𝑅 · (sin‘(𝐴 / 2)))))
33 nnex 11064 . . . . . . 7 ℕ ∈ V
3433mptex 6527 . . . . . 6 (𝑛 ∈ ℕ ↦ ((2 · 𝑛) · (𝑅 · (sin‘(𝐴 / 2))))) ∈ V
3532, 34eqeltri 2726 . . . . 5 𝑃 ∈ V
3635a1i 11 . . . 4 (⊤ → 𝑃 ∈ V)
37 eqid 2651 . . . . . . . . . 10 (𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) = (𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦))
38 eldifi 3765 . . . . . . . . . . . 12 (𝑦 ∈ (ℝ ∖ {0}) → 𝑦 ∈ ℝ)
3938resincld 14917 . . . . . . . . . . 11 (𝑦 ∈ (ℝ ∖ {0}) → (sin‘𝑦) ∈ ℝ)
40 eldifsni 4353 . . . . . . . . . . 11 (𝑦 ∈ (ℝ ∖ {0}) → 𝑦 ≠ 0)
4139, 38, 40redivcld 10891 . . . . . . . . . 10 (𝑦 ∈ (ℝ ∖ {0}) → ((sin‘𝑦) / 𝑦) ∈ ℝ)
4237, 41fmpti 6423 . . . . . . . . 9 (𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)):(ℝ ∖ {0})⟶ℝ
43 fco 6096 . . . . . . . . 9 (((𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)):(ℝ ∖ {0})⟶ℝ ∧ (𝑛 ∈ ℕ ↦ (π / 𝑛)):ℕ⟶(ℝ ∖ {0})) → ((𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) ∘ (𝑛 ∈ ℕ ↦ (π / 𝑛))):ℕ⟶ℝ)
4442, 18, 43mp2an 708 . . . . . . . 8 ((𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) ∘ (𝑛 ∈ ℕ ↦ (π / 𝑛))):ℕ⟶ℝ
4516trud 1533 . . . . . . . . 9 ((𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) ∘ (𝑛 ∈ ℕ ↦ (π / 𝑛))) = (𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))
4645feq1i 6074 . . . . . . . 8 (((𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) ∘ (𝑛 ∈ ℕ ↦ (π / 𝑛))):ℕ⟶ℝ ↔ (𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛))):ℕ⟶ℝ)
4744, 46mpbi 220 . . . . . . 7 (𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛))):ℕ⟶ℝ
4847ffvelrni 6398 . . . . . 6 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))‘𝑘) ∈ ℝ)
4948adantl 481 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))‘𝑘) ∈ ℝ)
5049recnd 10106 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))‘𝑘) ∈ ℂ)
5126recni 10090 . . . . . . . . . . . . . . 15 2 ∈ ℂ
5251a1i 11 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → 2 ∈ ℂ)
5320a1i 11 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → π ∈ ℂ)
54 nncn 11066 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
5554adantl 481 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
56 nnne0 11091 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
5756adantl 481 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ≠ 0)
5852, 53, 55, 57divassd 10874 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · π) / 𝑘) = (2 · (π / 𝑘)))
5958oveq1d 6705 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → (((2 · π) / 𝑘) / 2) = ((2 · (π / 𝑘)) / 2))
60 simpr 476 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
61 nndivre 11094 . . . . . . . . . . . . . . 15 ((π ∈ ℝ ∧ 𝑘 ∈ ℕ) → (π / 𝑘) ∈ ℝ)
6219, 60, 61sylancr 696 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → (π / 𝑘) ∈ ℝ)
6362recnd 10106 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (π / 𝑘) ∈ ℂ)
64 2ne0 11151 . . . . . . . . . . . . . 14 2 ≠ 0
6564a1i 11 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → 2 ≠ 0)
6663, 52, 65divcan3d 10844 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · (π / 𝑘)) / 2) = (π / 𝑘))
6759, 66eqtrd 2685 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → (((2 · π) / 𝑘) / 2) = (π / 𝑘))
6867fveq2d 6233 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → (sin‘(((2 · π) / 𝑘) / 2)) = (sin‘(π / 𝑘)))
6962resincld 14917 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → (sin‘(π / 𝑘)) ∈ ℝ)
7069recnd 10106 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → (sin‘(π / 𝑘)) ∈ ℂ)
71 nnrp 11880 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
7271adantl 481 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ+)
73 rpdivcl 11894 . . . . . . . . . . . . 13 ((π ∈ ℝ+𝑘 ∈ ℝ+) → (π / 𝑘) ∈ ℝ+)
743, 72, 73sylancr 696 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → (π / 𝑘) ∈ ℝ+)
7574rpne0d 11915 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → (π / 𝑘) ≠ 0)
7670, 63, 75divcan2d 10841 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → ((π / 𝑘) · ((sin‘(π / 𝑘)) / (π / 𝑘))) = (sin‘(π / 𝑘)))
7768, 76eqtr4d 2688 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (sin‘(((2 · π) / 𝑘) / 2)) = ((π / 𝑘) · ((sin‘(π / 𝑘)) / (π / 𝑘))))
7877oveq2d 6706 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑅 · (sin‘(((2 · π) / 𝑘) / 2))) = (𝑅 · ((π / 𝑘) · ((sin‘(π / 𝑘)) / (π / 𝑘)))))
7928recni 10090 . . . . . . . . . 10 𝑅 ∈ ℂ
8079a1i 11 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑅 ∈ ℂ)
81 oveq2 6698 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (π / 𝑛) = (π / 𝑘))
8281fveq2d 6233 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (sin‘(π / 𝑛)) = (sin‘(π / 𝑘)))
8382, 81oveq12d 6708 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((sin‘(π / 𝑛)) / (π / 𝑛)) = ((sin‘(π / 𝑘)) / (π / 𝑘)))
84 eqid 2651 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛))) = (𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))
85 ovex 6718 . . . . . . . . . . . 12 ((sin‘(π / 𝑘)) / (π / 𝑘)) ∈ V
8683, 84, 85fvmpt 6321 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))‘𝑘) = ((sin‘(π / 𝑘)) / (π / 𝑘)))
8786adantl 481 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))‘𝑘) = ((sin‘(π / 𝑘)) / (π / 𝑘)))
8887, 50eqeltrrd 2731 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → ((sin‘(π / 𝑘)) / (π / 𝑘)) ∈ ℂ)
8980, 63, 88mulassd 10101 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑅 · (π / 𝑘)) · ((sin‘(π / 𝑘)) / (π / 𝑘))) = (𝑅 · ((π / 𝑘) · ((sin‘(π / 𝑘)) / (π / 𝑘)))))
9078, 89eqtr4d 2688 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑅 · (sin‘(((2 · π) / 𝑘) / 2))) = ((𝑅 · (π / 𝑘)) · ((sin‘(π / 𝑘)) / (π / 𝑘))))
9190oveq2d 6706 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) · (𝑅 · (sin‘(((2 · π) / 𝑘) / 2)))) = ((2 · 𝑘) · ((𝑅 · (π / 𝑘)) · ((sin‘(π / 𝑘)) / (π / 𝑘)))))
92 mulcl 10058 . . . . . . . 8 ((2 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (2 · 𝑘) ∈ ℂ)
9351, 55, 92sylancr 696 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℂ)
94 mulcl 10058 . . . . . . . 8 ((𝑅 ∈ ℂ ∧ (π / 𝑘) ∈ ℂ) → (𝑅 · (π / 𝑘)) ∈ ℂ)
9579, 63, 94sylancr 696 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑅 · (π / 𝑘)) ∈ ℂ)
9693, 95, 88mulassd 10101 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (((2 · 𝑘) · (𝑅 · (π / 𝑘))) · ((sin‘(π / 𝑘)) / (π / 𝑘))) = ((2 · 𝑘) · ((𝑅 · (π / 𝑘)) · ((sin‘(π / 𝑘)) / (π / 𝑘)))))
9752, 55, 80, 63mul4d 10286 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) · (𝑅 · (π / 𝑘))) = ((2 · 𝑅) · (𝑘 · (π / 𝑘))))
9853, 55, 57divcan2d 10841 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑘 · (π / 𝑘)) = π)
9998oveq2d 6706 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑅) · (𝑘 · (π / 𝑘))) = ((2 · 𝑅) · π))
10052, 80, 53mul32d 10284 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑅) · π) = ((2 · π) · 𝑅))
10199, 100eqtrd 2685 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑅) · (𝑘 · (π / 𝑘))) = ((2 · π) · 𝑅))
10297, 101eqtrd 2685 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) · (𝑅 · (π / 𝑘))) = ((2 · π) · 𝑅))
103102oveq1d 6705 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (((2 · 𝑘) · (𝑅 · (π / 𝑘))) · ((sin‘(π / 𝑘)) / (π / 𝑘))) = (((2 · π) · 𝑅) · ((sin‘(π / 𝑘)) / (π / 𝑘))))
10491, 96, 1033eqtr2d 2691 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) · (𝑅 · (sin‘(((2 · π) / 𝑘) / 2)))) = (((2 · π) · 𝑅) · ((sin‘(π / 𝑘)) / (π / 𝑘))))
105 oveq2 6698 . . . . . . . 8 (𝑛 = 𝑘 → (2 · 𝑛) = (2 · 𝑘))
106 circum.1 . . . . . . . . . . . 12 𝐴 = ((2 · π) / 𝑛)
107 oveq2 6698 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((2 · π) / 𝑛) = ((2 · π) / 𝑘))
108106, 107syl5eq 2697 . . . . . . . . . . 11 (𝑛 = 𝑘𝐴 = ((2 · π) / 𝑘))
109108oveq1d 6705 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝐴 / 2) = (((2 · π) / 𝑘) / 2))
110109fveq2d 6233 . . . . . . . . 9 (𝑛 = 𝑘 → (sin‘(𝐴 / 2)) = (sin‘(((2 · π) / 𝑘) / 2)))
111110oveq2d 6706 . . . . . . . 8 (𝑛 = 𝑘 → (𝑅 · (sin‘(𝐴 / 2))) = (𝑅 · (sin‘(((2 · π) / 𝑘) / 2))))
112105, 111oveq12d 6708 . . . . . . 7 (𝑛 = 𝑘 → ((2 · 𝑛) · (𝑅 · (sin‘(𝐴 / 2)))) = ((2 · 𝑘) · (𝑅 · (sin‘(((2 · π) / 𝑘) / 2)))))
113 ovex 6718 . . . . . . 7 ((2 · 𝑘) · (𝑅 · (sin‘(((2 · π) / 𝑘) / 2)))) ∈ V
114112, 32, 113fvmpt 6321 . . . . . 6 (𝑘 ∈ ℕ → (𝑃𝑘) = ((2 · 𝑘) · (𝑅 · (sin‘(((2 · π) / 𝑘) / 2)))))
115114adantl 481 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑃𝑘) = ((2 · 𝑘) · (𝑅 · (sin‘(((2 · π) / 𝑘) / 2)))))
11687oveq2d 6706 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (((2 · π) · 𝑅) · ((𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))‘𝑘)) = (((2 · π) · 𝑅) · ((sin‘(π / 𝑘)) / (π / 𝑘))))
117104, 115, 1163eqtr4d 2695 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑃𝑘) = (((2 · π) · 𝑅) · ((𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))‘𝑘)))
1181, 2, 25, 31, 36, 50, 117climmulc2 14411 . . 3 (⊤ → 𝑃 ⇝ (((2 · π) · 𝑅) · 1))
119118trud 1533 . 2 𝑃 ⇝ (((2 · π) · 𝑅) · 1)
12030mulid1i 10080 . 2 (((2 · π) · 𝑅) · 1) = ((2 · π) · 𝑅)
121119, 120breqtri 4710 1 𝑃 ⇝ ((2 · π) · 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1523  wtru 1524  wcel 2030  wne 2823  Vcvv 3231  cdif 3604  {csn 4210   class class class wbr 4685  cmpt 4762  ccom 5147  wf 5922  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975   · cmul 9979   / cdiv 10722  cn 11058  2c2 11108  +crp 11870  cli 14259  sincsin 14838  πcpi 14841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-ef 14842  df-sin 14844  df-cos 14845  df-pi 14847  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-limc 23675  df-dv 23676
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator