MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cictr Structured version   Visualization version   GIF version

Theorem cictr 16512
Description: Isomorphism is transitive. (Contributed by AV, 5-Apr-2020.)
Assertion
Ref Expression
cictr ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆𝑆( ≃𝑐𝐶)𝑇) → 𝑅( ≃𝑐𝐶)𝑇)

Proof of Theorem cictr
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ciclcl 16509 . . . . . 6 ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆) → 𝑅 ∈ (Base‘𝐶))
2 cicrcl 16510 . . . . . 6 ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆) → 𝑆 ∈ (Base‘𝐶))
31, 2jca 553 . . . . 5 ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆) → (𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)))
43ex 449 . . . 4 (𝐶 ∈ Cat → (𝑅( ≃𝑐𝐶)𝑆 → (𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶))))
5 cicrcl 16510 . . . . 5 ((𝐶 ∈ Cat ∧ 𝑆( ≃𝑐𝐶)𝑇) → 𝑇 ∈ (Base‘𝐶))
65ex 449 . . . 4 (𝐶 ∈ Cat → (𝑆( ≃𝑐𝐶)𝑇𝑇 ∈ (Base‘𝐶)))
74, 6anim12d 585 . . 3 (𝐶 ∈ Cat → ((𝑅( ≃𝑐𝐶)𝑆𝑆( ≃𝑐𝐶)𝑇) → ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))))
873impib 1281 . 2 ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆𝑆( ≃𝑐𝐶)𝑇) → ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))
9 eqid 2651 . . . . . . . 8 (Iso‘𝐶) = (Iso‘𝐶)
10 eqid 2651 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
11 simpl 472 . . . . . . . 8 ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
12 simpll 805 . . . . . . . . 9 (((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)) → 𝑅 ∈ (Base‘𝐶))
1312adantl 481 . . . . . . . 8 ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑅 ∈ (Base‘𝐶))
14 simplr 807 . . . . . . . . 9 (((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)) → 𝑆 ∈ (Base‘𝐶))
1514adantl 481 . . . . . . . 8 ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑆 ∈ (Base‘𝐶))
169, 10, 11, 13, 15cic 16506 . . . . . . 7 ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → (𝑅( ≃𝑐𝐶)𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)))
17 simprr 811 . . . . . . . 8 ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑇 ∈ (Base‘𝐶))
189, 10, 11, 15, 17cic 16506 . . . . . . 7 ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → (𝑆( ≃𝑐𝐶)𝑇 ↔ ∃𝑔 𝑔 ∈ (𝑆(Iso‘𝐶)𝑇)))
1916, 18anbi12d 747 . . . . . 6 ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → ((𝑅( ≃𝑐𝐶)𝑆𝑆( ≃𝑐𝐶)𝑇) ↔ (∃𝑓 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) ∧ ∃𝑔 𝑔 ∈ (𝑆(Iso‘𝐶)𝑇))))
2011adantl 481 . . . . . . . . . . . . . 14 (((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) ∧ (𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))) → 𝐶 ∈ Cat)
2113adantl 481 . . . . . . . . . . . . . 14 (((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) ∧ (𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))) → 𝑅 ∈ (Base‘𝐶))
2217adantl 481 . . . . . . . . . . . . . 14 (((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) ∧ (𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))) → 𝑇 ∈ (Base‘𝐶))
23 eqid 2651 . . . . . . . . . . . . . . 15 (comp‘𝐶) = (comp‘𝐶)
2415adantl 481 . . . . . . . . . . . . . . 15 (((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) ∧ (𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))) → 𝑆 ∈ (Base‘𝐶))
25 simplr 807 . . . . . . . . . . . . . . 15 (((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) ∧ (𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))) → 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆))
26 simpll 805 . . . . . . . . . . . . . . 15 (((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) ∧ (𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))) → 𝑔 ∈ (𝑆(Iso‘𝐶)𝑇))
2710, 23, 9, 20, 21, 24, 22, 25, 26isoco 16484 . . . . . . . . . . . . . 14 (((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) ∧ (𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))) → (𝑔(⟨𝑅, 𝑆⟩(comp‘𝐶)𝑇)𝑓) ∈ (𝑅(Iso‘𝐶)𝑇))
289, 10, 20, 21, 22, 27brcici 16507 . . . . . . . . . . . . 13 (((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) ∧ (𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))) → 𝑅( ≃𝑐𝐶)𝑇)
2928ex 449 . . . . . . . . . . . 12 ((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) → ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑅( ≃𝑐𝐶)𝑇))
3029ex 449 . . . . . . . . . . 11 (𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) → (𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) → ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑅( ≃𝑐𝐶)𝑇)))
3130exlimiv 1898 . . . . . . . . . 10 (∃𝑔 𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) → (𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) → ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑅( ≃𝑐𝐶)𝑇)))
3231com12 32 . . . . . . . . 9 (𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) → (∃𝑔 𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) → ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑅( ≃𝑐𝐶)𝑇)))
3332exlimiv 1898 . . . . . . . 8 (∃𝑓 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) → (∃𝑔 𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) → ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑅( ≃𝑐𝐶)𝑇)))
3433imp 444 . . . . . . 7 ((∃𝑓 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) ∧ ∃𝑔 𝑔 ∈ (𝑆(Iso‘𝐶)𝑇)) → ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑅( ≃𝑐𝐶)𝑇))
3534com12 32 . . . . . 6 ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → ((∃𝑓 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) ∧ ∃𝑔 𝑔 ∈ (𝑆(Iso‘𝐶)𝑇)) → 𝑅( ≃𝑐𝐶)𝑇))
3619, 35sylbid 230 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → ((𝑅( ≃𝑐𝐶)𝑆𝑆( ≃𝑐𝐶)𝑇) → 𝑅( ≃𝑐𝐶)𝑇))
3736ex 449 . . . 4 (𝐶 ∈ Cat → (((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)) → ((𝑅( ≃𝑐𝐶)𝑆𝑆( ≃𝑐𝐶)𝑇) → 𝑅( ≃𝑐𝐶)𝑇)))
3837com23 86 . . 3 (𝐶 ∈ Cat → ((𝑅( ≃𝑐𝐶)𝑆𝑆( ≃𝑐𝐶)𝑇) → (((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)) → 𝑅( ≃𝑐𝐶)𝑇)))
39383impib 1281 . 2 ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆𝑆( ≃𝑐𝐶)𝑇) → (((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)) → 𝑅( ≃𝑐𝐶)𝑇))
408, 39mpd 15 1 ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆𝑆( ≃𝑐𝐶)𝑇) → 𝑅( ≃𝑐𝐶)𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054  wex 1744  wcel 2030  cop 4216   class class class wbr 4685  cfv 5926  (class class class)co 6690  Basecbs 15904  compcco 16000  Catccat 16372  Isociso 16453  𝑐 ccic 16502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-supp 7341  df-cat 16376  df-cid 16377  df-sect 16454  df-inv 16455  df-iso 16456  df-cic 16503
This theorem is referenced by:  cicer  16513  nzerooringczr  42397
  Copyright terms: Public domain W3C validator