Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  chtvalz Structured version   Visualization version   GIF version

Theorem chtvalz 31037
Description: Value of the Chebyshev function for integers. (Contributed by Thierry Arnoux, 28-Dec-2021.)
Assertion
Ref Expression
chtvalz (𝑁 ∈ ℤ → (θ‘𝑁) = Σ𝑛 ∈ ((1...𝑁) ∩ ℙ)(log‘𝑛))
Distinct variable group:   𝑛,𝑁

Proof of Theorem chtvalz
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 zre 11593 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2 chtval 25056 . . 3 (𝑁 ∈ ℝ → (θ‘𝑁) = Σ𝑛 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑛))
31, 2syl 17 . 2 (𝑁 ∈ ℤ → (θ‘𝑁) = Σ𝑛 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑛))
4 nnz 11611 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
5 ppisval 25050 . . . . . . . . 9 (𝑁 ∈ ℝ → ((0[,]𝑁) ∩ ℙ) = ((2...(⌊‘𝑁)) ∩ ℙ))
61, 5syl 17 . . . . . . . 8 (𝑁 ∈ ℤ → ((0[,]𝑁) ∩ ℙ) = ((2...(⌊‘𝑁)) ∩ ℙ))
7 flid 12823 . . . . . . . . . 10 (𝑁 ∈ ℤ → (⌊‘𝑁) = 𝑁)
87oveq2d 6830 . . . . . . . . 9 (𝑁 ∈ ℤ → (2...(⌊‘𝑁)) = (2...𝑁))
98ineq1d 3956 . . . . . . . 8 (𝑁 ∈ ℤ → ((2...(⌊‘𝑁)) ∩ ℙ) = ((2...𝑁) ∩ ℙ))
106, 9eqtrd 2794 . . . . . . 7 (𝑁 ∈ ℤ → ((0[,]𝑁) ∩ ℙ) = ((2...𝑁) ∩ ℙ))
114, 10syl 17 . . . . . 6 (𝑁 ∈ ℕ → ((0[,]𝑁) ∩ ℙ) = ((2...𝑁) ∩ ℙ))
12 2nn 11397 . . . . . . . . . . . . 13 2 ∈ ℕ
13 nnuz 11936 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
1412, 13eleqtri 2837 . . . . . . . . . . . 12 2 ∈ (ℤ‘1)
15 fzss1 12593 . . . . . . . . . . . 12 (2 ∈ (ℤ‘1) → (2...𝑁) ⊆ (1...𝑁))
1614, 15ax-mp 5 . . . . . . . . . . 11 (2...𝑁) ⊆ (1...𝑁)
17 ssdif0 4085 . . . . . . . . . . 11 ((2...𝑁) ⊆ (1...𝑁) ↔ ((2...𝑁) ∖ (1...𝑁)) = ∅)
1816, 17mpbi 220 . . . . . . . . . 10 ((2...𝑁) ∖ (1...𝑁)) = ∅
1918ineq1i 3953 . . . . . . . . 9 (((2...𝑁) ∖ (1...𝑁)) ∩ ℙ) = (∅ ∩ ℙ)
20 0in 4112 . . . . . . . . 9 (∅ ∩ ℙ) = ∅
2119, 20eqtri 2782 . . . . . . . 8 (((2...𝑁) ∖ (1...𝑁)) ∩ ℙ) = ∅
2221a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → (((2...𝑁) ∖ (1...𝑁)) ∩ ℙ) = ∅)
2313eleq2i 2831 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
24 fzpred 12602 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘1) → (1...𝑁) = ({1} ∪ ((1 + 1)...𝑁)))
2523, 24sylbi 207 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (1...𝑁) = ({1} ∪ ((1 + 1)...𝑁)))
2625eqcomd 2766 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ({1} ∪ ((1 + 1)...𝑁)) = (1...𝑁))
27 1p1e2 11346 . . . . . . . . . . . . 13 (1 + 1) = 2
2827oveq1i 6824 . . . . . . . . . . . 12 ((1 + 1)...𝑁) = (2...𝑁)
2928a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((1 + 1)...𝑁) = (2...𝑁))
3026, 29difeq12d 3872 . . . . . . . . . 10 (𝑁 ∈ ℕ → (({1} ∪ ((1 + 1)...𝑁)) ∖ ((1 + 1)...𝑁)) = ((1...𝑁) ∖ (2...𝑁)))
31 difun2 4192 . . . . . . . . . . 11 (({1} ∪ ((1 + 1)...𝑁)) ∖ ((1 + 1)...𝑁)) = ({1} ∖ ((1 + 1)...𝑁))
32 fzpreddisj 12603 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘1) → ({1} ∩ ((1 + 1)...𝑁)) = ∅)
3323, 32sylbi 207 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ({1} ∩ ((1 + 1)...𝑁)) = ∅)
34 disjdif2 4191 . . . . . . . . . . . 12 (({1} ∩ ((1 + 1)...𝑁)) = ∅ → ({1} ∖ ((1 + 1)...𝑁)) = {1})
3533, 34syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ({1} ∖ ((1 + 1)...𝑁)) = {1})
3631, 35syl5eq 2806 . . . . . . . . . 10 (𝑁 ∈ ℕ → (({1} ∪ ((1 + 1)...𝑁)) ∖ ((1 + 1)...𝑁)) = {1})
3730, 36eqtr3d 2796 . . . . . . . . 9 (𝑁 ∈ ℕ → ((1...𝑁) ∖ (2...𝑁)) = {1})
3837ineq1d 3956 . . . . . . . 8 (𝑁 ∈ ℕ → (((1...𝑁) ∖ (2...𝑁)) ∩ ℙ) = ({1} ∩ ℙ))
39 incom 3948 . . . . . . . . 9 (ℙ ∩ {1}) = ({1} ∩ ℙ)
40 1nprm 15614 . . . . . . . . . 10 ¬ 1 ∈ ℙ
41 disjsn 4390 . . . . . . . . . 10 ((ℙ ∩ {1}) = ∅ ↔ ¬ 1 ∈ ℙ)
4240, 41mpbir 221 . . . . . . . . 9 (ℙ ∩ {1}) = ∅
4339, 42eqtr3i 2784 . . . . . . . 8 ({1} ∩ ℙ) = ∅
4438, 43syl6eq 2810 . . . . . . 7 (𝑁 ∈ ℕ → (((1...𝑁) ∖ (2...𝑁)) ∩ ℙ) = ∅)
45 difininv 29682 . . . . . . 7 (((((2...𝑁) ∖ (1...𝑁)) ∩ ℙ) = ∅ ∧ (((1...𝑁) ∖ (2...𝑁)) ∩ ℙ) = ∅) → ((2...𝑁) ∩ ℙ) = ((1...𝑁) ∩ ℙ))
4622, 44, 45syl2anc 696 . . . . . 6 (𝑁 ∈ ℕ → ((2...𝑁) ∩ ℙ) = ((1...𝑁) ∩ ℙ))
4711, 46eqtrd 2794 . . . . 5 (𝑁 ∈ ℕ → ((0[,]𝑁) ∩ ℙ) = ((1...𝑁) ∩ ℙ))
4847adantl 473 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((0[,]𝑁) ∩ ℙ) = ((1...𝑁) ∩ ℙ))
49 znnnlt1 11616 . . . . . 6 (𝑁 ∈ ℤ → (¬ 𝑁 ∈ ℕ ↔ 𝑁 < 1))
5049biimpa 502 . . . . 5 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ) → 𝑁 < 1)
51 incom 3948 . . . . . . 7 ((0[,]𝑁) ∩ ℙ) = (ℙ ∩ (0[,]𝑁))
52 isprm3 15618 . . . . . . . . . . 11 (𝑛 ∈ ℙ ↔ (𝑛 ∈ (ℤ‘2) ∧ ∀𝑖 ∈ (2...(𝑛 − 1)) ¬ 𝑖𝑛))
5352simplbi 478 . . . . . . . . . 10 (𝑛 ∈ ℙ → 𝑛 ∈ (ℤ‘2))
5453ssriv 3748 . . . . . . . . 9 ℙ ⊆ (ℤ‘2)
5512nnzi 11613 . . . . . . . . . 10 2 ∈ ℤ
56 uzssico 29876 . . . . . . . . . 10 (2 ∈ ℤ → (ℤ‘2) ⊆ (2[,)+∞))
5755, 56ax-mp 5 . . . . . . . . 9 (ℤ‘2) ⊆ (2[,)+∞)
5854, 57sstri 3753 . . . . . . . 8 ℙ ⊆ (2[,)+∞)
59 incom 3948 . . . . . . . . 9 ((0[,]𝑁) ∩ (2[,)+∞)) = ((2[,)+∞) ∩ (0[,]𝑁))
60 0xr 10298 . . . . . . . . . . . 12 0 ∈ ℝ*
6160a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 0 ∈ ℝ*)
6212nnrei 11241 . . . . . . . . . . . . 13 2 ∈ ℝ
6362rexri 10309 . . . . . . . . . . . 12 2 ∈ ℝ*
6463a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 2 ∈ ℝ*)
65 0le0 11322 . . . . . . . . . . . 12 0 ≤ 0
6665a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 0 ≤ 0)
671adantr 472 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 𝑁 ∈ ℝ)
68 1red 10267 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 1 ∈ ℝ)
6962a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 2 ∈ ℝ)
70 simpr 479 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 𝑁 < 1)
71 1lt2 11406 . . . . . . . . . . . . 13 1 < 2
7271a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 1 < 2)
7367, 68, 69, 70, 72lttrd 10410 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 𝑁 < 2)
74 iccssico 12458 . . . . . . . . . . 11 (((0 ∈ ℝ* ∧ 2 ∈ ℝ*) ∧ (0 ≤ 0 ∧ 𝑁 < 2)) → (0[,]𝑁) ⊆ (0[,)2))
7561, 64, 66, 73, 74syl22anc 1478 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → (0[,]𝑁) ⊆ (0[,)2))
76 pnfxr 10304 . . . . . . . . . . 11 +∞ ∈ ℝ*
77 icodisj 12510 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ 2 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((0[,)2) ∩ (2[,)+∞)) = ∅)
7860, 63, 76, 77mp3an 1573 . . . . . . . . . 10 ((0[,)2) ∩ (2[,)+∞)) = ∅
79 ssdisj 4170 . . . . . . . . . 10 (((0[,]𝑁) ⊆ (0[,)2) ∧ ((0[,)2) ∩ (2[,)+∞)) = ∅) → ((0[,]𝑁) ∩ (2[,)+∞)) = ∅)
8075, 78, 79sylancl 697 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → ((0[,]𝑁) ∩ (2[,)+∞)) = ∅)
8159, 80syl5eqr 2808 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → ((2[,)+∞) ∩ (0[,]𝑁)) = ∅)
82 ssdisj 4170 . . . . . . . 8 ((ℙ ⊆ (2[,)+∞) ∧ ((2[,)+∞) ∩ (0[,]𝑁)) = ∅) → (ℙ ∩ (0[,]𝑁)) = ∅)
8358, 81, 82sylancr 698 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → (ℙ ∩ (0[,]𝑁)) = ∅)
8451, 83syl5eq 2806 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → ((0[,]𝑁) ∩ ℙ) = ∅)
85 1zzd 11620 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 1 ∈ ℤ)
86 simpl 474 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 𝑁 ∈ ℤ)
87 fzn 12570 . . . . . . . . . 10 ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 1 ↔ (1...𝑁) = ∅))
8887biimpa 502 . . . . . . . . 9 (((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 1) → (1...𝑁) = ∅)
8985, 86, 70, 88syl21anc 1476 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → (1...𝑁) = ∅)
9089ineq1d 3956 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → ((1...𝑁) ∩ ℙ) = (∅ ∩ ℙ))
9190, 20syl6eq 2810 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → ((1...𝑁) ∩ ℙ) = ∅)
9284, 91eqtr4d 2797 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → ((0[,]𝑁) ∩ ℙ) = ((1...𝑁) ∩ ℙ))
9350, 92syldan 488 . . . 4 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ) → ((0[,]𝑁) ∩ ℙ) = ((1...𝑁) ∩ ℙ))
94 exmidd 431 . . . 4 (𝑁 ∈ ℤ → (𝑁 ∈ ℕ ∨ ¬ 𝑁 ∈ ℕ))
9548, 93, 94mpjaodan 862 . . 3 (𝑁 ∈ ℤ → ((0[,]𝑁) ∩ ℙ) = ((1...𝑁) ∩ ℙ))
9695sumeq1d 14650 . 2 (𝑁 ∈ ℤ → Σ𝑛 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑛) = Σ𝑛 ∈ ((1...𝑁) ∩ ℙ)(log‘𝑛))
973, 96eqtrd 2794 1 (𝑁 ∈ ℤ → (θ‘𝑁) = Σ𝑛 ∈ ((1...𝑁) ∩ ℙ)(log‘𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1632  wcel 2139  wral 3050  cdif 3712  cun 3713  cin 3714  wss 3715  c0 4058  {csn 4321   class class class wbr 4804  cfv 6049  (class class class)co 6814  cr 10147  0cc0 10148  1c1 10149   + caddc 10151  +∞cpnf 10283  *cxr 10285   < clt 10286  cle 10287  cmin 10478  cn 11232  2c2 11282  cz 11589  cuz 11899  [,)cico 12390  [,]cicc 12391  ...cfz 12539  cfl 12805  Σcsu 14635  cdvds 15202  cprime 15607  logclog 24521  θccht 25037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-sup 8515  df-inf 8516  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-n0 11505  df-z 11590  df-uz 11900  df-rp 12046  df-ico 12394  df-icc 12395  df-fz 12540  df-fl 12807  df-seq 13016  df-exp 13075  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-sum 14636  df-dvds 15203  df-prm 15608  df-cht 25043
This theorem is referenced by:  hgt750lemd  31056
  Copyright terms: Public domain W3C validator