Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtppilim Structured version   Visualization version   GIF version

Theorem chtppilim 25209
 Description: The θ function is asymptotic to π(𝑥)log(𝑥), so it is sufficient to prove θ(𝑥) / 𝑥 ⇝𝑟 1 to establish the PNT. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
chtppilim (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) ⇝𝑟 1

Proof of Theorem chtppilim
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 halfre 11284 . . . . . . . . 9 (1 / 2) ∈ ℝ
2 1re 10077 . . . . . . . . . 10 1 ∈ ℝ
3 rpre 11877 . . . . . . . . . 10 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
4 resubcl 10383 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (1 − 𝑦) ∈ ℝ)
52, 3, 4sylancr 696 . . . . . . . . 9 (𝑦 ∈ ℝ+ → (1 − 𝑦) ∈ ℝ)
6 ifcl 4163 . . . . . . . . 9 (((1 / 2) ∈ ℝ ∧ (1 − 𝑦) ∈ ℝ) → if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∈ ℝ)
71, 5, 6sylancr 696 . . . . . . . 8 (𝑦 ∈ ℝ+ → if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∈ ℝ)
8 0red 10079 . . . . . . . . 9 (𝑦 ∈ ℝ+ → 0 ∈ ℝ)
91a1i 11 . . . . . . . . 9 (𝑦 ∈ ℝ+ → (1 / 2) ∈ ℝ)
10 halfgt0 11286 . . . . . . . . . 10 0 < (1 / 2)
1110a1i 11 . . . . . . . . 9 (𝑦 ∈ ℝ+ → 0 < (1 / 2))
12 max2 12056 . . . . . . . . . 10 (((1 − 𝑦) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (1 / 2) ≤ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))
135, 1, 12sylancl 695 . . . . . . . . 9 (𝑦 ∈ ℝ+ → (1 / 2) ≤ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))
148, 9, 7, 11, 13ltletrd 10235 . . . . . . . 8 (𝑦 ∈ ℝ+ → 0 < if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))
157, 14elrpd 11907 . . . . . . 7 (𝑦 ∈ ℝ+ → if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∈ ℝ+)
1615rpsqrtcld 14194 . . . . . 6 (𝑦 ∈ ℝ+ → (√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦))) ∈ ℝ+)
17 halflt1 11288 . . . . . . . . 9 (1 / 2) < 1
18 ltsubrp 11904 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (1 − 𝑦) < 1)
192, 18mpan 706 . . . . . . . . 9 (𝑦 ∈ ℝ+ → (1 − 𝑦) < 1)
20 breq1 4688 . . . . . . . . . 10 ((1 / 2) = if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) → ((1 / 2) < 1 ↔ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < 1))
21 breq1 4688 . . . . . . . . . 10 ((1 − 𝑦) = if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) → ((1 − 𝑦) < 1 ↔ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < 1))
2220, 21ifboth 4157 . . . . . . . . 9 (((1 / 2) < 1 ∧ (1 − 𝑦) < 1) → if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < 1)
2317, 19, 22sylancr 696 . . . . . . . 8 (𝑦 ∈ ℝ+ → if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < 1)
2415rpge0d 11914 . . . . . . . . 9 (𝑦 ∈ ℝ+ → 0 ≤ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))
252a1i 11 . . . . . . . . 9 (𝑦 ∈ ℝ+ → 1 ∈ ℝ)
26 0le1 10589 . . . . . . . . . 10 0 ≤ 1
2726a1i 11 . . . . . . . . 9 (𝑦 ∈ ℝ+ → 0 ≤ 1)
287, 24, 25, 27sqrtltd 14210 . . . . . . . 8 (𝑦 ∈ ℝ+ → (if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < 1 ↔ (√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦))) < (√‘1)))
2923, 28mpbid 222 . . . . . . 7 (𝑦 ∈ ℝ+ → (√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦))) < (√‘1))
30 sqrt1 14056 . . . . . . 7 (√‘1) = 1
3129, 30syl6breq 4726 . . . . . 6 (𝑦 ∈ ℝ+ → (√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦))) < 1)
3216, 31chtppilimlem2 25208 . . . . 5 (𝑦 ∈ ℝ+ → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)))
335adantr 480 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → (1 − 𝑦) ∈ ℝ)
34 max1 12054 . . . . . . . . . . 11 (((1 − 𝑦) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (1 − 𝑦) ≤ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))
3533, 1, 34sylancl 695 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → (1 − 𝑦) ≤ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))
367adantr 480 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∈ ℝ)
37 2re 11128 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
38 elicopnf 12307 . . . . . . . . . . . . . . . 16 (2 ∈ ℝ → (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥)))
3937, 38ax-mp 5 . . . . . . . . . . . . . . 15 (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))
4039simplbi 475 . . . . . . . . . . . . . 14 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ)
41 chtcl 24880 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (θ‘𝑥) ∈ ℝ)
4240, 41syl 17 . . . . . . . . . . . . 13 (𝑥 ∈ (2[,)+∞) → (θ‘𝑥) ∈ ℝ)
43 ppinncl 24945 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (π𝑥) ∈ ℕ)
4439, 43sylbi 207 . . . . . . . . . . . . . . 15 (𝑥 ∈ (2[,)+∞) → (π𝑥) ∈ ℕ)
4544nnrpd 11908 . . . . . . . . . . . . . 14 (𝑥 ∈ (2[,)+∞) → (π𝑥) ∈ ℝ+)
462a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (2[,)+∞) → 1 ∈ ℝ)
4737a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (2[,)+∞) → 2 ∈ ℝ)
48 1lt2 11232 . . . . . . . . . . . . . . . . 17 1 < 2
4948a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (2[,)+∞) → 1 < 2)
5039simprbi 479 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (2[,)+∞) → 2 ≤ 𝑥)
5146, 47, 40, 49, 50ltletrd 10235 . . . . . . . . . . . . . . 15 (𝑥 ∈ (2[,)+∞) → 1 < 𝑥)
5240, 51rplogcld 24420 . . . . . . . . . . . . . 14 (𝑥 ∈ (2[,)+∞) → (log‘𝑥) ∈ ℝ+)
5345, 52rpmulcld 11926 . . . . . . . . . . . . 13 (𝑥 ∈ (2[,)+∞) → ((π𝑥) · (log‘𝑥)) ∈ ℝ+)
5442, 53rerpdivcld 11941 . . . . . . . . . . . 12 (𝑥 ∈ (2[,)+∞) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℝ)
5554adantl 481 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℝ)
56 lelttr 10166 . . . . . . . . . . 11 (((1 − 𝑦) ∈ ℝ ∧ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∈ ℝ ∧ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℝ) → (((1 − 𝑦) ≤ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∧ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) → (1 − 𝑦) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
5733, 36, 55, 56syl3anc 1366 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → (((1 − 𝑦) ≤ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∧ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) → (1 − 𝑦) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
5835, 57mpand 711 . . . . . . . . 9 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → (if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) → (1 − 𝑦) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
597recnd 10106 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ+ → if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∈ ℂ)
6059sqsqrtd 14222 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ+ → ((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) = if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))
6160adantr 480 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) = if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))
6261oveq1d 6705 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → (((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) · ((π𝑥) · (log‘𝑥))) = (if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) · ((π𝑥) · (log‘𝑥))))
6362breq1d 4695 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥) ↔ (if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)))
6442adantl 481 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → (θ‘𝑥) ∈ ℝ)
6553rpregt0d 11916 . . . . . . . . . . . 12 (𝑥 ∈ (2[,)+∞) → (((π𝑥) · (log‘𝑥)) ∈ ℝ ∧ 0 < ((π𝑥) · (log‘𝑥))))
6665adantl 481 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → (((π𝑥) · (log‘𝑥)) ∈ ℝ ∧ 0 < ((π𝑥) · (log‘𝑥))))
67 ltmuldiv 10934 . . . . . . . . . . 11 ((if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∈ ℝ ∧ (θ‘𝑥) ∈ ℝ ∧ (((π𝑥) · (log‘𝑥)) ∈ ℝ ∧ 0 < ((π𝑥) · (log‘𝑥)))) → ((if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥) ↔ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
6836, 64, 66, 67syl3anc 1366 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥) ↔ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
6963, 68bitrd 268 . . . . . . . . 9 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥) ↔ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
70 0red 10079 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (2[,)+∞) → 0 ∈ ℝ)
71 2pos 11150 . . . . . . . . . . . . . . . . . . 19 0 < 2
7271a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (2[,)+∞) → 0 < 2)
7370, 47, 40, 72, 50ltletrd 10235 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (2[,)+∞) → 0 < 𝑥)
7440, 73elrpd 11907 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ+)
75 chtleppi 24980 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ+ → (θ‘𝑥) ≤ ((π𝑥) · (log‘𝑥)))
7674, 75syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ (2[,)+∞) → (θ‘𝑥) ≤ ((π𝑥) · (log‘𝑥)))
7753rpcnd 11912 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (2[,)+∞) → ((π𝑥) · (log‘𝑥)) ∈ ℂ)
7877mulid1d 10095 . . . . . . . . . . . . . . 15 (𝑥 ∈ (2[,)+∞) → (((π𝑥) · (log‘𝑥)) · 1) = ((π𝑥) · (log‘𝑥)))
7976, 78breqtrrd 4713 . . . . . . . . . . . . . 14 (𝑥 ∈ (2[,)+∞) → (θ‘𝑥) ≤ (((π𝑥) · (log‘𝑥)) · 1))
8042, 46, 53ledivmuld 11963 . . . . . . . . . . . . . 14 (𝑥 ∈ (2[,)+∞) → (((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ≤ 1 ↔ (θ‘𝑥) ≤ (((π𝑥) · (log‘𝑥)) · 1)))
8179, 80mpbird 247 . . . . . . . . . . . . 13 (𝑥 ∈ (2[,)+∞) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ≤ 1)
8254, 46, 81abssuble0d 14215 . . . . . . . . . . . 12 (𝑥 ∈ (2[,)+∞) → (abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) = (1 − ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
8382breq1d 4695 . . . . . . . . . . 11 (𝑥 ∈ (2[,)+∞) → ((abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦 ↔ (1 − ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) < 𝑦))
8483adantl 481 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦 ↔ (1 − ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) < 𝑦))
852a1i 11 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → 1 ∈ ℝ)
863adantr 480 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → 𝑦 ∈ ℝ)
87 ltsub23 10546 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((1 − ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) < 𝑦 ↔ (1 − 𝑦) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
8885, 55, 86, 87syl3anc 1366 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((1 − ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) < 𝑦 ↔ (1 − 𝑦) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
8984, 88bitrd 268 . . . . . . . . 9 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦 ↔ (1 − 𝑦) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
9058, 69, 893imtr4d 283 . . . . . . . 8 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥) → (abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦))
9190imim2d 57 . . . . . . 7 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((𝑧𝑥 → (((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)) → (𝑧𝑥 → (abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦)))
9291ralimdva 2991 . . . . . 6 (𝑦 ∈ ℝ+ → (∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)) → ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦)))
9392reximdv 3045 . . . . 5 (𝑦 ∈ ℝ+ → (∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦)))
9432, 93mpd 15 . . . 4 (𝑦 ∈ ℝ+ → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦))
9594rgen 2951 . . 3 𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦)
9654recnd 10106 . . . . . 6 (𝑥 ∈ (2[,)+∞) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℂ)
9796adantl 481 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℂ)
9897ralrimiva 2995 . . . 4 (⊤ → ∀𝑥 ∈ (2[,)+∞)((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℂ)
9940ssriv 3640 . . . . 5 (2[,)+∞) ⊆ ℝ
10099a1i 11 . . . 4 (⊤ → (2[,)+∞) ⊆ ℝ)
101 1cnd 10094 . . . 4 (⊤ → 1 ∈ ℂ)
10298, 100, 101rlim2 14271 . . 3 (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) ⇝𝑟 1 ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦)))
10395, 102mpbiri 248 . 2 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) ⇝𝑟 1)
104103trud 1533 1 (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) ⇝𝑟 1
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523  ⊤wtru 1524   ∈ wcel 2030  ∀wral 2941  ∃wrex 2942   ⊆ wss 3607  ifcif 4119   class class class wbr 4685   ↦ cmpt 4762  ‘cfv 5926  (class class class)co 6690  ℂcc 9972  ℝcr 9973  0cc0 9974  1c1 9975   · cmul 9979  +∞cpnf 10109   < clt 10112   ≤ cle 10113   − cmin 10304   / cdiv 10722  ℕcn 11058  2c2 11108  ℝ+crp 11870  [,)cico 12215  ↑cexp 12900  √csqrt 14017  abscabs 14018   ⇝𝑟 crli 14260  logclog 24346  θccht 24862  πcppi 24865 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-xnn0 11402  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-o1 14265  df-lo1 14266  df-sum 14461  df-ef 14842  df-e 14843  df-sin 14844  df-cos 14845  df-pi 14847  df-dvds 15028  df-gcd 15264  df-prm 15433  df-pc 15589  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-limc 23675  df-dv 23676  df-log 24348  df-cxp 24349  df-cht 24868  df-ppi 24871 This theorem is referenced by:  chebbnd2  25211  chto1lb  25212  pnt  25348
 Copyright terms: Public domain W3C validator