![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > chsssh | Structured version Visualization version GIF version |
Description: Closed subspaces are subspaces in a Hilbert space. (Contributed by NM, 29-May-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chsssh | ⊢ Cℋ ⊆ Sℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chsh 28415 | . 2 ⊢ (𝑥 ∈ Cℋ → 𝑥 ∈ Sℋ ) | |
2 | 1 | ssriv 3754 | 1 ⊢ Cℋ ⊆ Sℋ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3721 Sℋ csh 28119 Cℋ cch 28120 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-rex 3066 df-rab 3069 df-v 3351 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-xp 5255 df-cnv 5257 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fv 6039 df-ov 6795 df-ch 28412 |
This theorem is referenced by: chex 28417 chsspwh 28438 chintcli 28524 shatomistici 29554 |
Copyright terms: Public domain | W3C validator |