![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > chssoc | Structured version Visualization version GIF version |
Description: A closed subspace less than its orthocomplement is zero. (Contributed by NM, 14-Jun-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chssoc | ⊢ (𝐴 ∈ Cℋ → (𝐴 ⊆ (⊥‘𝐴) ↔ 𝐴 = 0ℋ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inidm 3969 | . . . 4 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
2 | sslin 3985 | . . . 4 ⊢ (𝐴 ⊆ (⊥‘𝐴) → (𝐴 ∩ 𝐴) ⊆ (𝐴 ∩ (⊥‘𝐴))) | |
3 | 1, 2 | syl5eqssr 3797 | . . 3 ⊢ (𝐴 ⊆ (⊥‘𝐴) → 𝐴 ⊆ (𝐴 ∩ (⊥‘𝐴))) |
4 | chocin 28688 | . . . . 5 ⊢ (𝐴 ∈ Cℋ → (𝐴 ∩ (⊥‘𝐴)) = 0ℋ) | |
5 | 4 | sseq2d 3780 | . . . 4 ⊢ (𝐴 ∈ Cℋ → (𝐴 ⊆ (𝐴 ∩ (⊥‘𝐴)) ↔ 𝐴 ⊆ 0ℋ)) |
6 | chle0 28636 | . . . 4 ⊢ (𝐴 ∈ Cℋ → (𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ)) | |
7 | 5, 6 | bitrd 268 | . . 3 ⊢ (𝐴 ∈ Cℋ → (𝐴 ⊆ (𝐴 ∩ (⊥‘𝐴)) ↔ 𝐴 = 0ℋ)) |
8 | 3, 7 | syl5ib 234 | . 2 ⊢ (𝐴 ∈ Cℋ → (𝐴 ⊆ (⊥‘𝐴) → 𝐴 = 0ℋ)) |
9 | simpr 471 | . . . 4 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐴 = 0ℋ) → 𝐴 = 0ℋ) | |
10 | choccl 28499 | . . . . . 6 ⊢ (𝐴 ∈ Cℋ → (⊥‘𝐴) ∈ Cℋ ) | |
11 | ch0le 28634 | . . . . . 6 ⊢ ((⊥‘𝐴) ∈ Cℋ → 0ℋ ⊆ (⊥‘𝐴)) | |
12 | 10, 11 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ Cℋ → 0ℋ ⊆ (⊥‘𝐴)) |
13 | 12 | adantr 466 | . . . 4 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐴 = 0ℋ) → 0ℋ ⊆ (⊥‘𝐴)) |
14 | 9, 13 | eqsstrd 3786 | . . 3 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐴 = 0ℋ) → 𝐴 ⊆ (⊥‘𝐴)) |
15 | 14 | ex 397 | . 2 ⊢ (𝐴 ∈ Cℋ → (𝐴 = 0ℋ → 𝐴 ⊆ (⊥‘𝐴))) |
16 | 8, 15 | impbid 202 | 1 ⊢ (𝐴 ∈ Cℋ → (𝐴 ⊆ (⊥‘𝐴) ↔ 𝐴 = 0ℋ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ∩ cin 3720 ⊆ wss 3721 ‘cfv 6031 Cℋ cch 28120 ⊥cort 28121 0ℋc0h 28126 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-inf2 8701 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-pre-sup 10215 ax-addf 10216 ax-mulf 10217 ax-hilex 28190 ax-hfvadd 28191 ax-hvcom 28192 ax-hvass 28193 ax-hv0cl 28194 ax-hvaddid 28195 ax-hfvmul 28196 ax-hvmulid 28197 ax-hvmulass 28198 ax-hvdistr1 28199 ax-hvdistr2 28200 ax-hvmul0 28201 ax-hfi 28270 ax-his1 28273 ax-his2 28274 ax-his3 28275 ax-his4 28276 ax-hcompl 28393 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-fal 1636 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-iin 4655 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-of 7043 df-om 7212 df-1st 7314 df-2nd 7315 df-supp 7446 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-2o 7713 df-oadd 7716 df-er 7895 df-map 8010 df-pm 8011 df-ixp 8062 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-fsupp 8431 df-fi 8472 df-sup 8503 df-inf 8504 df-oi 8570 df-card 8964 df-cda 9191 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 df-9 11287 df-n0 11494 df-z 11579 df-dec 11695 df-uz 11888 df-q 11991 df-rp 12035 df-xneg 12150 df-xadd 12151 df-xmul 12152 df-ioo 12383 df-icc 12386 df-fz 12533 df-fzo 12673 df-seq 13008 df-exp 13067 df-hash 13321 df-cj 14046 df-re 14047 df-im 14048 df-sqrt 14182 df-abs 14183 df-clim 14426 df-sum 14624 df-struct 16065 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-ress 16071 df-plusg 16161 df-mulr 16162 df-starv 16163 df-sca 16164 df-vsca 16165 df-ip 16166 df-tset 16167 df-ple 16168 df-ds 16171 df-unif 16172 df-hom 16173 df-cco 16174 df-rest 16290 df-topn 16291 df-0g 16309 df-gsum 16310 df-topgen 16311 df-pt 16312 df-prds 16315 df-xrs 16369 df-qtop 16374 df-imas 16375 df-xps 16377 df-mre 16453 df-mrc 16454 df-acs 16456 df-mgm 17449 df-sgrp 17491 df-mnd 17502 df-submnd 17543 df-mulg 17748 df-cntz 17956 df-cmn 18401 df-psmet 19952 df-xmet 19953 df-met 19954 df-bl 19955 df-mopn 19956 df-cnfld 19961 df-top 20918 df-topon 20935 df-topsp 20957 df-bases 20970 df-cn 21251 df-cnp 21252 df-lm 21253 df-haus 21339 df-tx 21585 df-hmeo 21778 df-xms 22344 df-ms 22345 df-tms 22346 df-cau 23272 df-grpo 27681 df-gid 27682 df-ginv 27683 df-gdiv 27684 df-ablo 27733 df-vc 27748 df-nv 27781 df-va 27784 df-ba 27785 df-sm 27786 df-0v 27787 df-vs 27788 df-nmcv 27789 df-ims 27790 df-dip 27890 df-hnorm 28159 df-hvsub 28162 df-hlim 28163 df-hcau 28164 df-sh 28398 df-ch 28412 df-oc 28443 df-ch0 28444 |
This theorem is referenced by: chirredlem1 29583 chirredi 29587 |
Copyright terms: Public domain | W3C validator |