![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > chssii | Structured version Visualization version GIF version |
Description: A closed subspace of a Hilbert space is a subset of Hilbert space. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chssi.1 | ⊢ 𝐻 ∈ Cℋ |
Ref | Expression |
---|---|
chssii | ⊢ 𝐻 ⊆ ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chssi.1 | . . 3 ⊢ 𝐻 ∈ Cℋ | |
2 | 1 | chshii 28393 | . 2 ⊢ 𝐻 ∈ Sℋ |
3 | 2 | shssii 28379 | 1 ⊢ 𝐻 ⊆ ℋ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2139 ⊆ wss 3715 ℋchil 28085 Cℋ cch 28095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-hilex 28165 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-xp 5272 df-cnv 5274 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fv 6057 df-ov 6816 df-sh 28373 df-ch 28387 |
This theorem is referenced by: cheli 28398 chelii 28399 hhsscms 28445 chocvali 28467 chm1i 28624 chsscon3i 28629 chsscon2i 28631 chjoi 28656 chj1i 28657 shjshsi 28660 sshhococi 28714 h1dei 28718 spansnpji 28746 spanunsni 28747 h1datomi 28749 spansnji 28814 pjfi 28872 riesz3i 29230 hmopidmpji 29320 pjoccoi 29346 pjinvari 29359 stcltr2i 29443 mdsymi 29579 mdcompli 29597 dmdcompli 29598 |
Copyright terms: Public domain | W3C validator |