![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > chss | Structured version Visualization version GIF version |
Description: A closed subspace of a Hilbert space is a subset of Hilbert space. (Contributed by NM, 24-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chss | ⊢ (𝐻 ∈ Cℋ → 𝐻 ⊆ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chsh 28421 | . 2 ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) | |
2 | shss 28407 | . 2 ⊢ (𝐻 ∈ Sℋ → 𝐻 ⊆ ℋ) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐻 ∈ Cℋ → 𝐻 ⊆ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2145 ⊆ wss 3723 ℋchil 28116 Sℋ csh 28125 Cℋ cch 28126 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-hilex 28196 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-opab 4848 df-xp 5256 df-cnv 5258 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5993 df-fv 6038 df-ov 6799 df-sh 28404 df-ch 28418 |
This theorem is referenced by: chel 28427 pjhcl 28600 dfch2 28606 shlub 28613 chsscon2 28701 chscllem2 28837 pjvec 28895 pjocvec 28896 pjhf 28907 elpjrn 29389 |
Copyright terms: Public domain | W3C validator |