Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  chscllem4 Structured version   Visualization version   GIF version

Theorem chscllem4 28808
 Description: Lemma for chscl 28809. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
chscl.1 (𝜑𝐴C )
chscl.2 (𝜑𝐵C )
chscl.3 (𝜑𝐵 ⊆ (⊥‘𝐴))
chscl.4 (𝜑𝐻:ℕ⟶(𝐴 + 𝐵))
chscl.5 (𝜑𝐻𝑣 𝑢)
chscl.6 𝐹 = (𝑛 ∈ ℕ ↦ ((proj𝐴)‘(𝐻𝑛)))
chscl.7 𝐺 = (𝑛 ∈ ℕ ↦ ((proj𝐵)‘(𝐻𝑛)))
Assertion
Ref Expression
chscllem4 (𝜑𝑢 ∈ (𝐴 + 𝐵))
Distinct variable groups:   𝑢,𝑛,𝐴   𝜑,𝑛   𝐵,𝑛,𝑢   𝑛,𝐻,𝑢
Allowed substitution hints:   𝜑(𝑢)   𝐹(𝑢,𝑛)   𝐺(𝑢,𝑛)

Proof of Theorem chscllem4
Dummy variables 𝑥 𝑦 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlimf 28403 . . . . 5 𝑣 :dom ⇝𝑣 ⟶ ℋ
2 ffun 6209 . . . . 5 ( ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ → Fun ⇝𝑣 )
31, 2ax-mp 5 . . . 4 Fun ⇝𝑣
4 chscl.5 . . . 4 (𝜑𝐻𝑣 𝑢)
5 funbrfv 6395 . . . 4 (Fun ⇝𝑣 → (𝐻𝑣 𝑢 → ( ⇝𝑣𝐻) = 𝑢))
63, 4, 5mpsyl 68 . . 3 (𝜑 → ( ⇝𝑣𝐻) = 𝑢)
7 chscl.4 . . . . . . 7 (𝜑𝐻:ℕ⟶(𝐴 + 𝐵))
87feqmptd 6411 . . . . . 6 (𝜑𝐻 = (𝑘 ∈ ℕ ↦ (𝐻𝑘)))
97ffvelrnda 6522 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐻𝑘) ∈ (𝐴 + 𝐵))
10 chscl.1 . . . . . . . . . . . 12 (𝜑𝐴C )
11 chsh 28390 . . . . . . . . . . . 12 (𝐴C𝐴S )
1210, 11syl 17 . . . . . . . . . . 11 (𝜑𝐴S )
13 chscl.2 . . . . . . . . . . . 12 (𝜑𝐵C )
14 chsh 28390 . . . . . . . . . . . 12 (𝐵C𝐵S )
1513, 14syl 17 . . . . . . . . . . 11 (𝜑𝐵S )
16 shsel 28482 . . . . . . . . . . 11 ((𝐴S𝐵S ) → ((𝐻𝑘) ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 (𝐻𝑘) = (𝑥 + 𝑦)))
1712, 15, 16syl2anc 696 . . . . . . . . . 10 (𝜑 → ((𝐻𝑘) ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 (𝐻𝑘) = (𝑥 + 𝑦)))
1817biimpa 502 . . . . . . . . 9 ((𝜑 ∧ (𝐻𝑘) ∈ (𝐴 + 𝐵)) → ∃𝑥𝐴𝑦𝐵 (𝐻𝑘) = (𝑥 + 𝑦))
199, 18syldan 488 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ∃𝑥𝐴𝑦𝐵 (𝐻𝑘) = (𝑥 + 𝑦))
20 simp3 1133 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → (𝐻𝑘) = (𝑥 + 𝑦))
21 simp1l 1240 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝜑)
2221, 10syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝐴C )
2321, 13syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝐵C )
24 chscl.3 . . . . . . . . . . . . . 14 (𝜑𝐵 ⊆ (⊥‘𝐴))
2521, 24syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝐵 ⊆ (⊥‘𝐴))
2621, 7syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝐻:ℕ⟶(𝐴 + 𝐵))
2721, 4syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝐻𝑣 𝑢)
28 chscl.6 . . . . . . . . . . . . 13 𝐹 = (𝑛 ∈ ℕ ↦ ((proj𝐴)‘(𝐻𝑛)))
29 simp1r 1241 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝑘 ∈ ℕ)
30 simp2l 1242 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝑥𝐴)
31 simp2r 1243 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝑦𝐵)
3222, 23, 25, 26, 27, 28, 29, 30, 31, 20chscllem3 28807 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝑥 = (𝐹𝑘))
33 chsscon2 28670 . . . . . . . . . . . . . . . 16 ((𝐵C𝐴C ) → (𝐵 ⊆ (⊥‘𝐴) ↔ 𝐴 ⊆ (⊥‘𝐵)))
3413, 10, 33syl2anc 696 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 ⊆ (⊥‘𝐴) ↔ 𝐴 ⊆ (⊥‘𝐵)))
3524, 34mpbid 222 . . . . . . . . . . . . . 14 (𝜑𝐴 ⊆ (⊥‘𝐵))
3621, 35syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝐴 ⊆ (⊥‘𝐵))
37 shscom 28487 . . . . . . . . . . . . . . . . 17 ((𝐴S𝐵S ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
3812, 15, 37syl2anc 696 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴))
3938feq3d 6193 . . . . . . . . . . . . . . 15 (𝜑 → (𝐻:ℕ⟶(𝐴 + 𝐵) ↔ 𝐻:ℕ⟶(𝐵 + 𝐴)))
407, 39mpbid 222 . . . . . . . . . . . . . 14 (𝜑𝐻:ℕ⟶(𝐵 + 𝐴))
4121, 40syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝐻:ℕ⟶(𝐵 + 𝐴))
42 chscl.7 . . . . . . . . . . . . 13 𝐺 = (𝑛 ∈ ℕ ↦ ((proj𝐵)‘(𝐻𝑛)))
43 shss 28376 . . . . . . . . . . . . . . . . . 18 (𝐴S𝐴 ⊆ ℋ)
4412, 43syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ⊆ ℋ)
4521, 44syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝐴 ⊆ ℋ)
4645, 30sseldd 3745 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝑥 ∈ ℋ)
47 shss 28376 . . . . . . . . . . . . . . . . . 18 (𝐵S𝐵 ⊆ ℋ)
4815, 47syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ⊆ ℋ)
4921, 48syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝐵 ⊆ ℋ)
5049, 31sseldd 3745 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝑦 ∈ ℋ)
51 ax-hvcom 28167 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
5246, 50, 51syl2anc 696 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
5320, 52eqtrd 2794 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → (𝐻𝑘) = (𝑦 + 𝑥))
5423, 22, 36, 41, 27, 42, 29, 31, 30, 53chscllem3 28807 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝑦 = (𝐺𝑘))
5532, 54oveq12d 6831 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → (𝑥 + 𝑦) = ((𝐹𝑘) + (𝐺𝑘)))
5620, 55eqtrd 2794 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))
57563exp 1113 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((𝑥𝐴𝑦𝐵) → ((𝐻𝑘) = (𝑥 + 𝑦) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))))
5857rexlimdvv 3175 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (∃𝑥𝐴𝑦𝐵 (𝐻𝑘) = (𝑥 + 𝑦) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘))))
5919, 58mpd 15 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))
6059mpteq2dva 4896 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ ↦ (𝐻𝑘)) = (𝑘 ∈ ℕ ↦ ((𝐹𝑘) + (𝐺𝑘))))
618, 60eqtrd 2794 . . . . 5 (𝜑𝐻 = (𝑘 ∈ ℕ ↦ ((𝐹𝑘) + (𝐺𝑘))))
6210, 13, 24, 7, 4, 28chscllem1 28805 . . . . . . 7 (𝜑𝐹:ℕ⟶𝐴)
6362, 44fssd 6218 . . . . . 6 (𝜑𝐹:ℕ⟶ ℋ)
6413, 10, 35, 40, 4, 42chscllem1 28805 . . . . . . 7 (𝜑𝐺:ℕ⟶𝐵)
6564, 48fssd 6218 . . . . . 6 (𝜑𝐺:ℕ⟶ ℋ)
6610, 13, 24, 7, 4, 28chscllem2 28806 . . . . . . 7 (𝜑𝐹 ∈ dom ⇝𝑣 )
67 funfvbrb 6493 . . . . . . . 8 (Fun ⇝𝑣 → (𝐹 ∈ dom ⇝𝑣𝐹𝑣 ( ⇝𝑣𝐹)))
683, 67ax-mp 5 . . . . . . 7 (𝐹 ∈ dom ⇝𝑣𝐹𝑣 ( ⇝𝑣𝐹))
6966, 68sylib 208 . . . . . 6 (𝜑𝐹𝑣 ( ⇝𝑣𝐹))
7013, 10, 35, 40, 4, 42chscllem2 28806 . . . . . . 7 (𝜑𝐺 ∈ dom ⇝𝑣 )
71 funfvbrb 6493 . . . . . . . 8 (Fun ⇝𝑣 → (𝐺 ∈ dom ⇝𝑣𝐺𝑣 ( ⇝𝑣𝐺)))
723, 71ax-mp 5 . . . . . . 7 (𝐺 ∈ dom ⇝𝑣𝐺𝑣 ( ⇝𝑣𝐺))
7370, 72sylib 208 . . . . . 6 (𝜑𝐺𝑣 ( ⇝𝑣𝐺))
74 eqid 2760 . . . . . 6 (𝑘 ∈ ℕ ↦ ((𝐹𝑘) + (𝐺𝑘))) = (𝑘 ∈ ℕ ↦ ((𝐹𝑘) + (𝐺𝑘)))
7563, 65, 69, 73, 74hlimadd 28359 . . . . 5 (𝜑 → (𝑘 ∈ ℕ ↦ ((𝐹𝑘) + (𝐺𝑘))) ⇝𝑣 (( ⇝𝑣𝐹) + ( ⇝𝑣𝐺)))
7661, 75eqbrtrd 4826 . . . 4 (𝜑𝐻𝑣 (( ⇝𝑣𝐹) + ( ⇝𝑣𝐺)))
77 funbrfv 6395 . . . 4 (Fun ⇝𝑣 → (𝐻𝑣 (( ⇝𝑣𝐹) + ( ⇝𝑣𝐺)) → ( ⇝𝑣𝐻) = (( ⇝𝑣𝐹) + ( ⇝𝑣𝐺))))
783, 76, 77mpsyl 68 . . 3 (𝜑 → ( ⇝𝑣𝐻) = (( ⇝𝑣𝐹) + ( ⇝𝑣𝐺)))
796, 78eqtr3d 2796 . 2 (𝜑𝑢 = (( ⇝𝑣𝐹) + ( ⇝𝑣𝐺)))
80 fvex 6362 . . . . 5 ( ⇝𝑣𝐹) ∈ V
8180chlimi 28400 . . . 4 ((𝐴C𝐹:ℕ⟶𝐴𝐹𝑣 ( ⇝𝑣𝐹)) → ( ⇝𝑣𝐹) ∈ 𝐴)
8210, 62, 69, 81syl3anc 1477 . . 3 (𝜑 → ( ⇝𝑣𝐹) ∈ 𝐴)
83 fvex 6362 . . . . 5 ( ⇝𝑣𝐺) ∈ V
8483chlimi 28400 . . . 4 ((𝐵C𝐺:ℕ⟶𝐵𝐺𝑣 ( ⇝𝑣𝐺)) → ( ⇝𝑣𝐺) ∈ 𝐵)
8513, 64, 73, 84syl3anc 1477 . . 3 (𝜑 → ( ⇝𝑣𝐺) ∈ 𝐵)
86 shsva 28488 . . . 4 ((𝐴S𝐵S ) → ((( ⇝𝑣𝐹) ∈ 𝐴 ∧ ( ⇝𝑣𝐺) ∈ 𝐵) → (( ⇝𝑣𝐹) + ( ⇝𝑣𝐺)) ∈ (𝐴 + 𝐵)))
8712, 15, 86syl2anc 696 . . 3 (𝜑 → ((( ⇝𝑣𝐹) ∈ 𝐴 ∧ ( ⇝𝑣𝐺) ∈ 𝐵) → (( ⇝𝑣𝐹) + ( ⇝𝑣𝐺)) ∈ (𝐴 + 𝐵)))
8882, 85, 87mp2and 717 . 2 (𝜑 → (( ⇝𝑣𝐹) + ( ⇝𝑣𝐺)) ∈ (𝐴 + 𝐵))
8979, 88eqeltrd 2839 1 (𝜑𝑢 ∈ (𝐴 + 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139  ∃wrex 3051   ⊆ wss 3715   class class class wbr 4804   ↦ cmpt 4881  dom cdm 5266  Fun wfun 6043  ⟶wf 6045  ‘cfv 6049  (class class class)co 6813  ℕcn 11212   ℋchil 28085   +ℎ cva 28086   ⇝𝑣 chli 28093   Sℋ csh 28094   Cℋ cch 28095  ⊥cort 28096   +ℋ cph 28097  projℎcpjh 28103 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208  ax-hilex 28165  ax-hfvadd 28166  ax-hvcom 28167  ax-hvass 28168  ax-hv0cl 28169  ax-hvaddid 28170  ax-hfvmul 28171  ax-hvmulid 28172  ax-hvmulass 28173  ax-hvdistr1 28174  ax-hvdistr2 28175  ax-hvmul0 28176  ax-hfi 28245  ax-his1 28248  ax-his2 28249  ax-his3 28250  ax-his4 28251  ax-hcompl 28368 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-fi 8482  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-icc 12375  df-fz 12520  df-fzo 12660  df-seq 12996  df-exp 13055  df-hash 13312  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-hom 16168  df-cco 16169  df-rest 16285  df-topn 16286  df-0g 16304  df-gsum 16305  df-topgen 16306  df-pt 16307  df-prds 16310  df-xrs 16364  df-qtop 16369  df-imas 16370  df-xps 16372  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17950  df-cmn 18395  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-cn 21233  df-cnp 21234  df-lm 21235  df-haus 21321  df-tx 21567  df-hmeo 21760  df-xms 22326  df-tms 22328  df-cau 23254  df-grpo 27656  df-gid 27657  df-ginv 27658  df-gdiv 27659  df-ablo 27708  df-vc 27723  df-nv 27756  df-va 27759  df-ba 27760  df-sm 27761  df-0v 27762  df-vs 27763  df-nmcv 27764  df-ims 27765  df-hnorm 28134  df-hba 28135  df-hvsub 28137  df-hlim 28138  df-hcau 28139  df-sh 28373  df-ch 28387  df-oc 28418  df-ch0 28419  df-shs 28476  df-pjh 28563 This theorem is referenced by:  chscl  28809
 Copyright terms: Public domain W3C validator