![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > chrval | Structured version Visualization version GIF version |
Description: Definition substitution of the ring characteristic. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
chrval.o | ⊢ 𝑂 = (od‘𝑅) |
chrval.u | ⊢ 1 = (1r‘𝑅) |
chrval.c | ⊢ 𝐶 = (chr‘𝑅) |
Ref | Expression |
---|---|
chrval | ⊢ (𝑂‘ 1 ) = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chrval.c | . 2 ⊢ 𝐶 = (chr‘𝑅) | |
2 | fveq2 6344 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (od‘𝑟) = (od‘𝑅)) | |
3 | chrval.o | . . . . . 6 ⊢ 𝑂 = (od‘𝑅) | |
4 | 2, 3 | syl6eqr 2804 | . . . . 5 ⊢ (𝑟 = 𝑅 → (od‘𝑟) = 𝑂) |
5 | fveq2 6344 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (1r‘𝑟) = (1r‘𝑅)) | |
6 | chrval.u | . . . . . 6 ⊢ 1 = (1r‘𝑅) | |
7 | 5, 6 | syl6eqr 2804 | . . . . 5 ⊢ (𝑟 = 𝑅 → (1r‘𝑟) = 1 ) |
8 | 4, 7 | fveq12d 6350 | . . . 4 ⊢ (𝑟 = 𝑅 → ((od‘𝑟)‘(1r‘𝑟)) = (𝑂‘ 1 )) |
9 | df-chr 20048 | . . . 4 ⊢ chr = (𝑟 ∈ V ↦ ((od‘𝑟)‘(1r‘𝑟))) | |
10 | fvex 6354 | . . . 4 ⊢ (𝑂‘ 1 ) ∈ V | |
11 | 8, 9, 10 | fvmpt 6436 | . . 3 ⊢ (𝑅 ∈ V → (chr‘𝑅) = (𝑂‘ 1 )) |
12 | fvprc 6338 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (chr‘𝑅) = ∅) | |
13 | fvprc 6338 | . . . . . . 7 ⊢ (¬ 𝑅 ∈ V → (od‘𝑅) = ∅) | |
14 | 3, 13 | syl5eq 2798 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → 𝑂 = ∅) |
15 | 14 | fveq1d 6346 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (𝑂‘ 1 ) = (∅‘ 1 )) |
16 | 0fv 6380 | . . . . 5 ⊢ (∅‘ 1 ) = ∅ | |
17 | 15, 16 | syl6eq 2802 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (𝑂‘ 1 ) = ∅) |
18 | 12, 17 | eqtr4d 2789 | . . 3 ⊢ (¬ 𝑅 ∈ V → (chr‘𝑅) = (𝑂‘ 1 )) |
19 | 11, 18 | pm2.61i 176 | . 2 ⊢ (chr‘𝑅) = (𝑂‘ 1 ) |
20 | 1, 19 | eqtr2i 2775 | 1 ⊢ (𝑂‘ 1 ) = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1624 ∈ wcel 2131 Vcvv 3332 ∅c0 4050 ‘cfv 6041 odcod 18136 1rcur 18693 chrcchr 20044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ral 3047 df-rex 3048 df-rab 3051 df-v 3334 df-sbc 3569 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4581 df-br 4797 df-opab 4857 df-mpt 4874 df-id 5166 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-iota 6004 df-fun 6043 df-fv 6049 df-chr 20048 |
This theorem is referenced by: chrcl 20068 chrid 20069 chrdvds 20070 chrcong 20071 subrgchr 30095 ofldchr 30115 zrhchr 30321 |
Copyright terms: Public domain | W3C validator |