![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > chrnzr | Structured version Visualization version GIF version |
Description: Nonzero rings are precisely those with characteristic not 1. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
Ref | Expression |
---|---|
chrnzr | ⊢ (𝑅 ∈ Ring → (𝑅 ∈ NzRing ↔ (chr‘𝑅) ≠ 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2760 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
2 | eqid 2760 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
3 | 1, 2 | isnzr 19461 | . . 3 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅))) |
4 | 3 | baib 982 | . 2 ⊢ (𝑅 ∈ Ring → (𝑅 ∈ NzRing ↔ (1r‘𝑅) ≠ (0g‘𝑅))) |
5 | 1z 11599 | . . . . 5 ⊢ 1 ∈ ℤ | |
6 | eqid 2760 | . . . . . 6 ⊢ (chr‘𝑅) = (chr‘𝑅) | |
7 | eqid 2760 | . . . . . 6 ⊢ (ℤRHom‘𝑅) = (ℤRHom‘𝑅) | |
8 | 6, 7, 2 | chrdvds 20078 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 1 ∈ ℤ) → ((chr‘𝑅) ∥ 1 ↔ ((ℤRHom‘𝑅)‘1) = (0g‘𝑅))) |
9 | 5, 8 | mpan2 709 | . . . 4 ⊢ (𝑅 ∈ Ring → ((chr‘𝑅) ∥ 1 ↔ ((ℤRHom‘𝑅)‘1) = (0g‘𝑅))) |
10 | 6 | chrcl 20076 | . . . . 5 ⊢ (𝑅 ∈ Ring → (chr‘𝑅) ∈ ℕ0) |
11 | dvds1 15243 | . . . . 5 ⊢ ((chr‘𝑅) ∈ ℕ0 → ((chr‘𝑅) ∥ 1 ↔ (chr‘𝑅) = 1)) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝑅 ∈ Ring → ((chr‘𝑅) ∥ 1 ↔ (chr‘𝑅) = 1)) |
13 | 7, 1 | zrh1 20063 | . . . . 5 ⊢ (𝑅 ∈ Ring → ((ℤRHom‘𝑅)‘1) = (1r‘𝑅)) |
14 | 13 | eqeq1d 2762 | . . . 4 ⊢ (𝑅 ∈ Ring → (((ℤRHom‘𝑅)‘1) = (0g‘𝑅) ↔ (1r‘𝑅) = (0g‘𝑅))) |
15 | 9, 12, 14 | 3bitr3d 298 | . . 3 ⊢ (𝑅 ∈ Ring → ((chr‘𝑅) = 1 ↔ (1r‘𝑅) = (0g‘𝑅))) |
16 | 15 | necon3bid 2976 | . 2 ⊢ (𝑅 ∈ Ring → ((chr‘𝑅) ≠ 1 ↔ (1r‘𝑅) ≠ (0g‘𝑅))) |
17 | 4, 16 | bitr4d 271 | 1 ⊢ (𝑅 ∈ Ring → (𝑅 ∈ NzRing ↔ (chr‘𝑅) ≠ 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 class class class wbr 4804 ‘cfv 6049 1c1 10129 ℕ0cn0 11484 ℤcz 11569 ∥ cdvds 15182 0gc0g 16302 1rcur 18701 Ringcrg 18747 NzRingcnzr 19459 ℤRHomczrh 20050 chrcchr 20052 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-inf2 8711 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-pre-sup 10206 ax-addf 10207 ax-mulf 10208 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-oadd 7733 df-er 7911 df-map 8025 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-sup 8513 df-inf 8514 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-5 11274 df-6 11275 df-7 11276 df-8 11277 df-9 11278 df-n0 11485 df-z 11570 df-dec 11686 df-uz 11880 df-rp 12026 df-fz 12520 df-fl 12787 df-mod 12863 df-seq 12996 df-exp 13055 df-cj 14038 df-re 14039 df-im 14040 df-sqrt 14174 df-abs 14175 df-dvds 15183 df-struct 16061 df-ndx 16062 df-slot 16063 df-base 16065 df-sets 16066 df-ress 16067 df-plusg 16156 df-mulr 16157 df-starv 16158 df-tset 16162 df-ple 16163 df-ds 16166 df-unif 16167 df-0g 16304 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-mhm 17536 df-grp 17626 df-minusg 17627 df-sbg 17628 df-mulg 17742 df-subg 17792 df-ghm 17859 df-od 18148 df-cmn 18395 df-mgp 18690 df-ur 18702 df-ring 18749 df-cring 18750 df-rnghom 18917 df-subrg 18980 df-nzr 19460 df-cnfld 19949 df-zring 20021 df-zrh 20054 df-chr 20056 |
This theorem is referenced by: domnchr 20082 |
Copyright terms: Public domain | W3C validator |