![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > chpeq0 | Structured version Visualization version GIF version |
Description: The second Chebyshev function is zero iff its argument is less than 2. (Contributed by Mario Carneiro, 9-Apr-2016.) |
Ref | Expression |
---|---|
chpeq0 | ⊢ (𝐴 ∈ ℝ → ((ψ‘𝐴) = 0 ↔ 𝐴 < 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 11291 | . . . . 5 ⊢ 2 ∈ ℝ | |
2 | lenlt 10317 | . . . . 5 ⊢ ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 ≤ 𝐴 ↔ ¬ 𝐴 < 2)) | |
3 | 1, 2 | mpan 662 | . . . 4 ⊢ (𝐴 ∈ ℝ → (2 ≤ 𝐴 ↔ ¬ 𝐴 < 2)) |
4 | chprpcl 25152 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → (ψ‘𝐴) ∈ ℝ+) | |
5 | 4 | rpne0d 12079 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → (ψ‘𝐴) ≠ 0) |
6 | 5 | ex 397 | . . . 4 ⊢ (𝐴 ∈ ℝ → (2 ≤ 𝐴 → (ψ‘𝐴) ≠ 0)) |
7 | 3, 6 | sylbird 250 | . . 3 ⊢ (𝐴 ∈ ℝ → (¬ 𝐴 < 2 → (ψ‘𝐴) ≠ 0)) |
8 | 7 | necon4bd 2962 | . 2 ⊢ (𝐴 ∈ ℝ → ((ψ‘𝐴) = 0 → 𝐴 < 2)) |
9 | reflcl 12804 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ) | |
10 | 9 | adantr 466 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) ∈ ℝ) |
11 | 1red 10256 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → 1 ∈ ℝ) | |
12 | 2z 11610 | . . . . . . . . . 10 ⊢ 2 ∈ ℤ | |
13 | fllt 12814 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 2 ∈ ℤ) → (𝐴 < 2 ↔ (⌊‘𝐴) < 2)) | |
14 | 12, 13 | mpan2 663 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → (𝐴 < 2 ↔ (⌊‘𝐴) < 2)) |
15 | 14 | biimpa 462 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) < 2) |
16 | df-2 11280 | . . . . . . . 8 ⊢ 2 = (1 + 1) | |
17 | 15, 16 | syl6breq 4825 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) < (1 + 1)) |
18 | flcl 12803 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ) | |
19 | 18 | adantr 466 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) ∈ ℤ) |
20 | 1z 11608 | . . . . . . . 8 ⊢ 1 ∈ ℤ | |
21 | zleltp1 11629 | . . . . . . . 8 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ 1 ∈ ℤ) → ((⌊‘𝐴) ≤ 1 ↔ (⌊‘𝐴) < (1 + 1))) | |
22 | 19, 20, 21 | sylancl 566 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → ((⌊‘𝐴) ≤ 1 ↔ (⌊‘𝐴) < (1 + 1))) |
23 | 17, 22 | mpbird 247 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) ≤ 1) |
24 | chpwordi 25103 | . . . . . 6 ⊢ (((⌊‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ (⌊‘𝐴) ≤ 1) → (ψ‘(⌊‘𝐴)) ≤ (ψ‘1)) | |
25 | 10, 11, 23, 24 | syl3anc 1475 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (ψ‘(⌊‘𝐴)) ≤ (ψ‘1)) |
26 | chpfl 25096 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (ψ‘(⌊‘𝐴)) = (ψ‘𝐴)) | |
27 | 26 | adantr 466 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (ψ‘(⌊‘𝐴)) = (ψ‘𝐴)) |
28 | chp1 25113 | . . . . . 6 ⊢ (ψ‘1) = 0 | |
29 | 28 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (ψ‘1) = 0) |
30 | 25, 27, 29 | 3brtr3d 4815 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (ψ‘𝐴) ≤ 0) |
31 | chpge0 25072 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 0 ≤ (ψ‘𝐴)) | |
32 | 31 | adantr 466 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → 0 ≤ (ψ‘𝐴)) |
33 | chpcl 25070 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (ψ‘𝐴) ∈ ℝ) | |
34 | 33 | adantr 466 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (ψ‘𝐴) ∈ ℝ) |
35 | 0re 10241 | . . . . 5 ⊢ 0 ∈ ℝ | |
36 | letri3 10324 | . . . . 5 ⊢ (((ψ‘𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((ψ‘𝐴) = 0 ↔ ((ψ‘𝐴) ≤ 0 ∧ 0 ≤ (ψ‘𝐴)))) | |
37 | 34, 35, 36 | sylancl 566 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → ((ψ‘𝐴) = 0 ↔ ((ψ‘𝐴) ≤ 0 ∧ 0 ≤ (ψ‘𝐴)))) |
38 | 30, 32, 37 | mpbir2and 684 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (ψ‘𝐴) = 0) |
39 | 38 | ex 397 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 < 2 → (ψ‘𝐴) = 0)) |
40 | 8, 39 | impbid 202 | 1 ⊢ (𝐴 ∈ ℝ → ((ψ‘𝐴) = 0 ↔ 𝐴 < 2)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ≠ wne 2942 class class class wbr 4784 ‘cfv 6031 (class class class)co 6792 ℝcr 10136 0cc0 10137 1c1 10138 + caddc 10140 < clt 10275 ≤ cle 10276 2c2 11271 ℤcz 11578 ⌊cfl 12798 ψcchp 25039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-inf2 8701 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-pre-sup 10215 ax-addf 10216 ax-mulf 10217 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-fal 1636 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-iin 4655 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-of 7043 df-om 7212 df-1st 7314 df-2nd 7315 df-supp 7446 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-2o 7713 df-oadd 7716 df-er 7895 df-map 8010 df-pm 8011 df-ixp 8062 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-fsupp 8431 df-fi 8472 df-sup 8503 df-inf 8504 df-oi 8570 df-card 8964 df-cda 9191 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 df-9 11287 df-n0 11494 df-z 11579 df-dec 11695 df-uz 11888 df-q 11991 df-rp 12035 df-xneg 12150 df-xadd 12151 df-xmul 12152 df-ioo 12383 df-ioc 12384 df-ico 12385 df-icc 12386 df-fz 12533 df-fzo 12673 df-fl 12800 df-mod 12876 df-seq 13008 df-exp 13067 df-fac 13264 df-bc 13293 df-hash 13321 df-shft 14014 df-cj 14046 df-re 14047 df-im 14048 df-sqrt 14182 df-abs 14183 df-limsup 14409 df-clim 14426 df-rlim 14427 df-sum 14624 df-ef 15003 df-sin 15005 df-cos 15006 df-pi 15008 df-dvds 15189 df-gcd 15424 df-prm 15592 df-pc 15748 df-struct 16065 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-ress 16071 df-plusg 16161 df-mulr 16162 df-starv 16163 df-sca 16164 df-vsca 16165 df-ip 16166 df-tset 16167 df-ple 16168 df-ds 16171 df-unif 16172 df-hom 16173 df-cco 16174 df-rest 16290 df-topn 16291 df-0g 16309 df-gsum 16310 df-topgen 16311 df-pt 16312 df-prds 16315 df-xrs 16369 df-qtop 16374 df-imas 16375 df-xps 16377 df-mre 16453 df-mrc 16454 df-acs 16456 df-mgm 17449 df-sgrp 17491 df-mnd 17502 df-submnd 17543 df-mulg 17748 df-cntz 17956 df-cmn 18401 df-psmet 19952 df-xmet 19953 df-met 19954 df-bl 19955 df-mopn 19956 df-fbas 19957 df-fg 19958 df-cnfld 19961 df-top 20918 df-topon 20935 df-topsp 20957 df-bases 20970 df-cld 21043 df-ntr 21044 df-cls 21045 df-nei 21122 df-lp 21160 df-perf 21161 df-cn 21251 df-cnp 21252 df-haus 21339 df-tx 21585 df-hmeo 21778 df-fil 21869 df-fm 21961 df-flim 21962 df-flf 21963 df-xms 22344 df-ms 22345 df-tms 22346 df-cncf 22900 df-limc 23849 df-dv 23850 df-log 24523 df-cht 25043 df-vma 25044 df-chp 25045 |
This theorem is referenced by: chteq0 25154 chpo1ubb 25390 selberg2lem 25459 pntrmax 25473 pntrsumo1 25474 pntrlog2bndlem2 25487 pntrlog2bndlem4 25489 |
Copyright terms: Public domain | W3C validator |