Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpdifbnd Structured version   Visualization version   GIF version

Theorem chpdifbnd 25464
 Description: A bound on the difference of nearby ψ values. Theorem 10.5.2 of [Shapiro], p. 427. (Contributed by Mario Carneiro, 25-May-2016.)
Assertion
Ref Expression
chpdifbnd ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ∃𝑐 ∈ ℝ+𝑥 ∈ (1(,)+∞)∀𝑦 ∈ (𝑥[,](𝐴 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦𝑥)) + (𝑐 · (𝑥 / (log‘𝑥)))))
Distinct variable group:   𝑥,𝑐,𝑦,𝐴

Proof of Theorem chpdifbnd
Dummy variables 𝑏 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 selberg2b 25461 . 2 𝑏 ∈ ℝ+𝑧 ∈ (1[,)+∞)(abs‘(((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑛 ∈ (1...(⌊‘𝑧))((Λ‘𝑛) · (ψ‘(𝑧 / 𝑛)))) / 𝑧) − (2 · (log‘𝑧)))) ≤ 𝑏
2 simpl 468 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ)
3 0red 10242 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 ∈ ℝ)
4 1red 10256 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 1 ∈ ℝ)
5 0lt1 10751 . . . . . . . 8 0 < 1
65a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 < 1)
7 simpr 471 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 1 ≤ 𝐴)
83, 4, 2, 6, 7ltletrd 10398 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 < 𝐴)
92, 8elrpd 12071 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ+)
109adantr 466 . . . 4 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑏 ∈ ℝ+ ∧ ∀𝑧 ∈ (1[,)+∞)(abs‘(((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑛 ∈ (1...(⌊‘𝑧))((Λ‘𝑛) · (ψ‘(𝑧 / 𝑛)))) / 𝑧) − (2 · (log‘𝑧)))) ≤ 𝑏)) → 𝐴 ∈ ℝ+)
11 simplr 744 . . . 4 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑏 ∈ ℝ+ ∧ ∀𝑧 ∈ (1[,)+∞)(abs‘(((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑛 ∈ (1...(⌊‘𝑧))((Λ‘𝑛) · (ψ‘(𝑧 / 𝑛)))) / 𝑧) − (2 · (log‘𝑧)))) ≤ 𝑏)) → 1 ≤ 𝐴)
12 simprl 746 . . . 4 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑏 ∈ ℝ+ ∧ ∀𝑧 ∈ (1[,)+∞)(abs‘(((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑛 ∈ (1...(⌊‘𝑧))((Λ‘𝑛) · (ψ‘(𝑧 / 𝑛)))) / 𝑧) − (2 · (log‘𝑧)))) ≤ 𝑏)) → 𝑏 ∈ ℝ+)
13 simprr 748 . . . 4 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑏 ∈ ℝ+ ∧ ∀𝑧 ∈ (1[,)+∞)(abs‘(((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑛 ∈ (1...(⌊‘𝑧))((Λ‘𝑛) · (ψ‘(𝑧 / 𝑛)))) / 𝑧) − (2 · (log‘𝑧)))) ≤ 𝑏)) → ∀𝑧 ∈ (1[,)+∞)(abs‘(((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑛 ∈ (1...(⌊‘𝑧))((Λ‘𝑛) · (ψ‘(𝑧 / 𝑛)))) / 𝑧) − (2 · (log‘𝑧)))) ≤ 𝑏)
14 eqid 2770 . . . 4 ((𝑏 · (𝐴 + 1)) + ((2 · 𝐴) · (log‘𝐴))) = ((𝑏 · (𝐴 + 1)) + ((2 · 𝐴) · (log‘𝐴)))
1510, 11, 12, 13, 14chpdifbndlem2 25463 . . 3 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑏 ∈ ℝ+ ∧ ∀𝑧 ∈ (1[,)+∞)(abs‘(((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑛 ∈ (1...(⌊‘𝑧))((Λ‘𝑛) · (ψ‘(𝑧 / 𝑛)))) / 𝑧) − (2 · (log‘𝑧)))) ≤ 𝑏)) → ∃𝑐 ∈ ℝ+𝑥 ∈ (1(,)+∞)∀𝑦 ∈ (𝑥[,](𝐴 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦𝑥)) + (𝑐 · (𝑥 / (log‘𝑥)))))
1615rexlimdvaa 3179 . 2 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (∃𝑏 ∈ ℝ+𝑧 ∈ (1[,)+∞)(abs‘(((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑛 ∈ (1...(⌊‘𝑧))((Λ‘𝑛) · (ψ‘(𝑧 / 𝑛)))) / 𝑧) − (2 · (log‘𝑧)))) ≤ 𝑏 → ∃𝑐 ∈ ℝ+𝑥 ∈ (1(,)+∞)∀𝑦 ∈ (𝑥[,](𝐴 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦𝑥)) + (𝑐 · (𝑥 / (log‘𝑥))))))
171, 16mpi 20 1 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ∃𝑐 ∈ ℝ+𝑥 ∈ (1(,)+∞)∀𝑦 ∈ (𝑥[,](𝐴 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦𝑥)) + (𝑐 · (𝑥 / (log‘𝑥)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   ∈ wcel 2144  ∀wral 3060  ∃wrex 3061   class class class wbr 4784  ‘cfv 6031  (class class class)co 6792  ℝcr 10136  0cc0 10137  1c1 10138   + caddc 10140   · cmul 10142  +∞cpnf 10272   < clt 10275   ≤ cle 10276   − cmin 10467   / cdiv 10885  2c2 11271  ℝ+crp 12034  (,)cioo 12379  [,)cico 12381  [,]cicc 12382  ...cfz 12532  ⌊cfl 12798  abscabs 14181  Σcsu 14623  logclog 24521  Λcvma 25038  ψcchp 25039 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215  ax-addf 10216  ax-mulf 10217 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-iin 4655  df-disj 4753  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-of 7043  df-om 7212  df-1st 7314  df-2nd 7315  df-supp 7446  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-2o 7713  df-oadd 7716  df-er 7895  df-map 8010  df-pm 8011  df-ixp 8062  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-fsupp 8431  df-fi 8472  df-sup 8503  df-inf 8504  df-oi 8570  df-card 8964  df-cda 9191  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-n0 11494  df-xnn0 11565  df-z 11579  df-dec 11695  df-uz 11888  df-q 11991  df-rp 12035  df-xneg 12150  df-xadd 12151  df-xmul 12152  df-ioo 12383  df-ioc 12384  df-ico 12385  df-icc 12386  df-fz 12533  df-fzo 12673  df-fl 12800  df-mod 12876  df-seq 13008  df-exp 13067  df-fac 13264  df-bc 13293  df-hash 13321  df-shft 14014  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-limsup 14409  df-clim 14426  df-rlim 14427  df-o1 14428  df-lo1 14429  df-sum 14624  df-ef 15003  df-e 15004  df-sin 15005  df-cos 15006  df-pi 15008  df-dvds 15189  df-gcd 15424  df-prm 15592  df-pc 15748  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-starv 16163  df-sca 16164  df-vsca 16165  df-ip 16166  df-tset 16167  df-ple 16168  df-ds 16171  df-unif 16172  df-hom 16173  df-cco 16174  df-rest 16290  df-topn 16291  df-0g 16309  df-gsum 16310  df-topgen 16311  df-pt 16312  df-prds 16315  df-xrs 16369  df-qtop 16374  df-imas 16375  df-xps 16377  df-mre 16453  df-mrc 16454  df-acs 16456  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-submnd 17543  df-mulg 17748  df-cntz 17956  df-cmn 18401  df-psmet 19952  df-xmet 19953  df-met 19954  df-bl 19955  df-mopn 19956  df-fbas 19957  df-fg 19958  df-cnfld 19961  df-top 20918  df-topon 20935  df-topsp 20957  df-bases 20970  df-cld 21043  df-ntr 21044  df-cls 21045  df-nei 21122  df-lp 21160  df-perf 21161  df-cn 21251  df-cnp 21252  df-haus 21339  df-cmp 21410  df-tx 21585  df-hmeo 21778  df-fil 21869  df-fm 21961  df-flim 21962  df-flf 21963  df-xms 22344  df-ms 22345  df-tms 22346  df-cncf 22900  df-limc 23849  df-dv 23850  df-log 24523  df-cxp 24524  df-em 24939  df-cht 25043  df-vma 25044  df-chp 25045  df-ppi 25046  df-mu 25047 This theorem is referenced by:  pntibndlem3  25501
 Copyright terms: Public domain W3C validator