![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > chordthmlem5 | Structured version Visualization version GIF version |
Description: If P is on the segment AB and AQ = BQ, then PA · PB = BQ 2 − PQ 2 . This follows from two uses of chordthmlem3 24782 to show that PQ 2 = QM 2 + PM 2 and BQ 2 = QM 2 + BM 2 , so BQ 2 − PQ 2 = (QM 2 + BM 2 ) − (QM 2 + PM 2 ) = BM 2 − PM 2 , which equals PA · PB by chordthmlem4 24783. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
chordthmlem5.A | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
chordthmlem5.B | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
chordthmlem5.Q | ⊢ (𝜑 → 𝑄 ∈ ℂ) |
chordthmlem5.X | ⊢ (𝜑 → 𝑋 ∈ (0[,]1)) |
chordthmlem5.P | ⊢ (𝜑 → 𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵))) |
chordthmlem5.ABequidistQ | ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐵 − 𝑄))) |
Ref | Expression |
---|---|
chordthmlem5 | ⊢ (𝜑 → ((abs‘(𝑃 − 𝐴)) · (abs‘(𝑃 − 𝐵))) = (((abs‘(𝐵 − 𝑄))↑2) − ((abs‘(𝑃 − 𝑄))↑2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chordthmlem5.Q | . . . . . . 7 ⊢ (𝜑 → 𝑄 ∈ ℂ) | |
2 | chordthmlem5.A | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
3 | chordthmlem5.B | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | 2, 3 | addcld 10265 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) |
5 | 4 | halfcld 11484 | . . . . . . 7 ⊢ (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℂ) |
6 | 1, 5 | subcld 10598 | . . . . . 6 ⊢ (𝜑 → (𝑄 − ((𝐴 + 𝐵) / 2)) ∈ ℂ) |
7 | 6 | abscld 14383 | . . . . 5 ⊢ (𝜑 → (abs‘(𝑄 − ((𝐴 + 𝐵) / 2))) ∈ ℝ) |
8 | 7 | recnd 10274 | . . . 4 ⊢ (𝜑 → (abs‘(𝑄 − ((𝐴 + 𝐵) / 2))) ∈ ℂ) |
9 | 8 | sqcld 13213 | . . 3 ⊢ (𝜑 → ((abs‘(𝑄 − ((𝐴 + 𝐵) / 2)))↑2) ∈ ℂ) |
10 | 3, 5 | subcld 10598 | . . . . . 6 ⊢ (𝜑 → (𝐵 − ((𝐴 + 𝐵) / 2)) ∈ ℂ) |
11 | 10 | abscld 14383 | . . . . 5 ⊢ (𝜑 → (abs‘(𝐵 − ((𝐴 + 𝐵) / 2))) ∈ ℝ) |
12 | 11 | recnd 10274 | . . . 4 ⊢ (𝜑 → (abs‘(𝐵 − ((𝐴 + 𝐵) / 2))) ∈ ℂ) |
13 | 12 | sqcld 13213 | . . 3 ⊢ (𝜑 → ((abs‘(𝐵 − ((𝐴 + 𝐵) / 2)))↑2) ∈ ℂ) |
14 | chordthmlem5.P | . . . . . . . 8 ⊢ (𝜑 → 𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵))) | |
15 | unitssre 12526 | . . . . . . . . . . . 12 ⊢ (0[,]1) ⊆ ℝ | |
16 | chordthmlem5.X | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑋 ∈ (0[,]1)) | |
17 | 15, 16 | sseldi 3750 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑋 ∈ ℝ) |
18 | 17 | recnd 10274 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
19 | 18, 2 | mulcld 10266 | . . . . . . . . 9 ⊢ (𝜑 → (𝑋 · 𝐴) ∈ ℂ) |
20 | 1cnd 10262 | . . . . . . . . . . 11 ⊢ (𝜑 → 1 ∈ ℂ) | |
21 | 20, 18 | subcld 10598 | . . . . . . . . . 10 ⊢ (𝜑 → (1 − 𝑋) ∈ ℂ) |
22 | 21, 3 | mulcld 10266 | . . . . . . . . 9 ⊢ (𝜑 → ((1 − 𝑋) · 𝐵) ∈ ℂ) |
23 | 19, 22 | addcld 10265 | . . . . . . . 8 ⊢ (𝜑 → ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)) ∈ ℂ) |
24 | 14, 23 | eqeltrd 2850 | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ ℂ) |
25 | 24, 5 | subcld 10598 | . . . . . 6 ⊢ (𝜑 → (𝑃 − ((𝐴 + 𝐵) / 2)) ∈ ℂ) |
26 | 25 | abscld 14383 | . . . . 5 ⊢ (𝜑 → (abs‘(𝑃 − ((𝐴 + 𝐵) / 2))) ∈ ℝ) |
27 | 26 | recnd 10274 | . . . 4 ⊢ (𝜑 → (abs‘(𝑃 − ((𝐴 + 𝐵) / 2))) ∈ ℂ) |
28 | 27 | sqcld 13213 | . . 3 ⊢ (𝜑 → ((abs‘(𝑃 − ((𝐴 + 𝐵) / 2)))↑2) ∈ ℂ) |
29 | 9, 13, 28 | pnpcand 10635 | . 2 ⊢ (𝜑 → ((((abs‘(𝑄 − ((𝐴 + 𝐵) / 2)))↑2) + ((abs‘(𝐵 − ((𝐴 + 𝐵) / 2)))↑2)) − (((abs‘(𝑄 − ((𝐴 + 𝐵) / 2)))↑2) + ((abs‘(𝑃 − ((𝐴 + 𝐵) / 2)))↑2))) = (((abs‘(𝐵 − ((𝐴 + 𝐵) / 2)))↑2) − ((abs‘(𝑃 − ((𝐴 + 𝐵) / 2)))↑2))) |
30 | 0red 10247 | . . . 4 ⊢ (𝜑 → 0 ∈ ℝ) | |
31 | eqidd 2772 | . . . 4 ⊢ (𝜑 → ((𝐴 + 𝐵) / 2) = ((𝐴 + 𝐵) / 2)) | |
32 | 2 | mul02d 10440 | . . . . . 6 ⊢ (𝜑 → (0 · 𝐴) = 0) |
33 | 20 | subid1d 10587 | . . . . . . . 8 ⊢ (𝜑 → (1 − 0) = 1) |
34 | 33 | oveq1d 6811 | . . . . . . 7 ⊢ (𝜑 → ((1 − 0) · 𝐵) = (1 · 𝐵)) |
35 | 3 | mulid2d 10264 | . . . . . . 7 ⊢ (𝜑 → (1 · 𝐵) = 𝐵) |
36 | 34, 35 | eqtrd 2805 | . . . . . 6 ⊢ (𝜑 → ((1 − 0) · 𝐵) = 𝐵) |
37 | 32, 36 | oveq12d 6814 | . . . . 5 ⊢ (𝜑 → ((0 · 𝐴) + ((1 − 0) · 𝐵)) = (0 + 𝐵)) |
38 | 3 | addid2d 10443 | . . . . 5 ⊢ (𝜑 → (0 + 𝐵) = 𝐵) |
39 | 37, 38 | eqtr2d 2806 | . . . 4 ⊢ (𝜑 → 𝐵 = ((0 · 𝐴) + ((1 − 0) · 𝐵))) |
40 | chordthmlem5.ABequidistQ | . . . 4 ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐵 − 𝑄))) | |
41 | 2, 3, 1, 30, 31, 39, 40 | chordthmlem3 24782 | . . 3 ⊢ (𝜑 → ((abs‘(𝐵 − 𝑄))↑2) = (((abs‘(𝑄 − ((𝐴 + 𝐵) / 2)))↑2) + ((abs‘(𝐵 − ((𝐴 + 𝐵) / 2)))↑2))) |
42 | 2, 3, 1, 17, 31, 14, 40 | chordthmlem3 24782 | . . 3 ⊢ (𝜑 → ((abs‘(𝑃 − 𝑄))↑2) = (((abs‘(𝑄 − ((𝐴 + 𝐵) / 2)))↑2) + ((abs‘(𝑃 − ((𝐴 + 𝐵) / 2)))↑2))) |
43 | 41, 42 | oveq12d 6814 | . 2 ⊢ (𝜑 → (((abs‘(𝐵 − 𝑄))↑2) − ((abs‘(𝑃 − 𝑄))↑2)) = ((((abs‘(𝑄 − ((𝐴 + 𝐵) / 2)))↑2) + ((abs‘(𝐵 − ((𝐴 + 𝐵) / 2)))↑2)) − (((abs‘(𝑄 − ((𝐴 + 𝐵) / 2)))↑2) + ((abs‘(𝑃 − ((𝐴 + 𝐵) / 2)))↑2)))) |
44 | 2, 3, 16, 31, 14 | chordthmlem4 24783 | . 2 ⊢ (𝜑 → ((abs‘(𝑃 − 𝐴)) · (abs‘(𝑃 − 𝐵))) = (((abs‘(𝐵 − ((𝐴 + 𝐵) / 2)))↑2) − ((abs‘(𝑃 − ((𝐴 + 𝐵) / 2)))↑2))) |
45 | 29, 43, 44 | 3eqtr4rd 2816 | 1 ⊢ (𝜑 → ((abs‘(𝑃 − 𝐴)) · (abs‘(𝑃 − 𝐵))) = (((abs‘(𝐵 − 𝑄))↑2) − ((abs‘(𝑃 − 𝑄))↑2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 ‘cfv 6030 (class class class)co 6796 ℂcc 10140 ℝcr 10141 0cc0 10142 1c1 10143 + caddc 10145 · cmul 10147 − cmin 10472 / cdiv 10890 2c2 11276 [,]cicc 12383 ↑cexp 13067 abscabs 14182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-inf2 8706 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 ax-pre-sup 10220 ax-addf 10221 ax-mulf 10222 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-iin 4658 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-se 5210 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-isom 6039 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-of 7048 df-om 7217 df-1st 7319 df-2nd 7320 df-supp 7451 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-2o 7718 df-oadd 7721 df-er 7900 df-map 8015 df-pm 8016 df-ixp 8067 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-fsupp 8436 df-fi 8477 df-sup 8508 df-inf 8509 df-oi 8575 df-card 8969 df-cda 9196 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-div 10891 df-nn 11227 df-2 11285 df-3 11286 df-4 11287 df-5 11288 df-6 11289 df-7 11290 df-8 11291 df-9 11292 df-n0 11500 df-z 11585 df-dec 11701 df-uz 11894 df-q 11997 df-rp 12036 df-xneg 12151 df-xadd 12152 df-xmul 12153 df-ioo 12384 df-ioc 12385 df-ico 12386 df-icc 12387 df-fz 12534 df-fzo 12674 df-fl 12801 df-mod 12877 df-seq 13009 df-exp 13068 df-fac 13265 df-bc 13294 df-hash 13322 df-shft 14015 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-limsup 14410 df-clim 14427 df-rlim 14428 df-sum 14625 df-ef 15004 df-sin 15006 df-cos 15007 df-pi 15009 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-starv 16164 df-sca 16165 df-vsca 16166 df-ip 16167 df-tset 16168 df-ple 16169 df-ds 16172 df-unif 16173 df-hom 16174 df-cco 16175 df-rest 16291 df-topn 16292 df-0g 16310 df-gsum 16311 df-topgen 16312 df-pt 16313 df-prds 16316 df-xrs 16370 df-qtop 16375 df-imas 16376 df-xps 16378 df-mre 16454 df-mrc 16455 df-acs 16457 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-submnd 17544 df-mulg 17749 df-cntz 17957 df-cmn 18402 df-psmet 19953 df-xmet 19954 df-met 19955 df-bl 19956 df-mopn 19957 df-fbas 19958 df-fg 19959 df-cnfld 19962 df-top 20919 df-topon 20936 df-topsp 20958 df-bases 20971 df-cld 21044 df-ntr 21045 df-cls 21046 df-nei 21123 df-lp 21161 df-perf 21162 df-cn 21252 df-cnp 21253 df-haus 21340 df-tx 21586 df-hmeo 21779 df-fil 21870 df-fm 21962 df-flim 21963 df-flf 21964 df-xms 22345 df-ms 22346 df-tms 22347 df-cncf 22901 df-limc 23850 df-dv 23851 df-log 24524 |
This theorem is referenced by: chordthm 24785 chordthmALT 39691 |
Copyright terms: Public domain | W3C validator |