MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chordthmlem3 Structured version   Visualization version   GIF version

Theorem chordthmlem3 24782
Description: If M is the midpoint of AB, AQ = BQ, and P is on the line AB, then PQ 2 = QM 2 + PM 2 . This follows from chordthmlem2 24781 and the Pythagorean theorem (pythag 24768) in the case where P and Q are unequal to M. If either P or Q equals M, the result is trivial. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
chordthmlem3.A (𝜑𝐴 ∈ ℂ)
chordthmlem3.B (𝜑𝐵 ∈ ℂ)
chordthmlem3.Q (𝜑𝑄 ∈ ℂ)
chordthmlem3.X (𝜑𝑋 ∈ ℝ)
chordthmlem3.M (𝜑𝑀 = ((𝐴 + 𝐵) / 2))
chordthmlem3.P (𝜑𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)))
chordthmlem3.ABequidistQ (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
Assertion
Ref Expression
chordthmlem3 (𝜑 → ((abs‘(𝑃𝑄))↑2) = (((abs‘(𝑄𝑀))↑2) + ((abs‘(𝑃𝑀))↑2)))

Proof of Theorem chordthmlem3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 chordthmlem3.Q . . . . . . . . 9 (𝜑𝑄 ∈ ℂ)
2 chordthmlem3.M . . . . . . . . . 10 (𝜑𝑀 = ((𝐴 + 𝐵) / 2))
3 chordthmlem3.A . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
4 chordthmlem3.B . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℂ)
53, 4addcld 10261 . . . . . . . . . . 11 (𝜑 → (𝐴 + 𝐵) ∈ ℂ)
65halfcld 11479 . . . . . . . . . 10 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℂ)
72, 6eqeltrd 2850 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
81, 7subcld 10594 . . . . . . . 8 (𝜑 → (𝑄𝑀) ∈ ℂ)
98abscld 14383 . . . . . . 7 (𝜑 → (abs‘(𝑄𝑀)) ∈ ℝ)
109recnd 10270 . . . . . 6 (𝜑 → (abs‘(𝑄𝑀)) ∈ ℂ)
1110sqcld 13213 . . . . 5 (𝜑 → ((abs‘(𝑄𝑀))↑2) ∈ ℂ)
1211adantr 466 . . . 4 ((𝜑𝑃 = 𝑀) → ((abs‘(𝑄𝑀))↑2) ∈ ℂ)
1312addid1d 10438 . . 3 ((𝜑𝑃 = 𝑀) → (((abs‘(𝑄𝑀))↑2) + 0) = ((abs‘(𝑄𝑀))↑2))
14 chordthmlem3.P . . . . . . . . 9 (𝜑𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)))
15 chordthmlem3.X . . . . . . . . . . . 12 (𝜑𝑋 ∈ ℝ)
1615recnd 10270 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℂ)
1716, 3mulcld 10262 . . . . . . . . . 10 (𝜑 → (𝑋 · 𝐴) ∈ ℂ)
18 1cnd 10258 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℂ)
1918, 16subcld 10594 . . . . . . . . . . 11 (𝜑 → (1 − 𝑋) ∈ ℂ)
2019, 4mulcld 10262 . . . . . . . . . 10 (𝜑 → ((1 − 𝑋) · 𝐵) ∈ ℂ)
2117, 20addcld 10261 . . . . . . . . 9 (𝜑 → ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)) ∈ ℂ)
2214, 21eqeltrd 2850 . . . . . . . 8 (𝜑𝑃 ∈ ℂ)
2322adantr 466 . . . . . . 7 ((𝜑𝑃 = 𝑀) → 𝑃 ∈ ℂ)
24 simpr 471 . . . . . . 7 ((𝜑𝑃 = 𝑀) → 𝑃 = 𝑀)
2523, 24subeq0bd 10658 . . . . . 6 ((𝜑𝑃 = 𝑀) → (𝑃𝑀) = 0)
2625abs00bd 14239 . . . . 5 ((𝜑𝑃 = 𝑀) → (abs‘(𝑃𝑀)) = 0)
2726sq0id 13164 . . . 4 ((𝜑𝑃 = 𝑀) → ((abs‘(𝑃𝑀))↑2) = 0)
2827oveq2d 6809 . . 3 ((𝜑𝑃 = 𝑀) → (((abs‘(𝑄𝑀))↑2) + ((abs‘(𝑃𝑀))↑2)) = (((abs‘(𝑄𝑀))↑2) + 0))
291adantr 466 . . . . . 6 ((𝜑𝑃 = 𝑀) → 𝑄 ∈ ℂ)
3029, 23abssubd 14400 . . . . 5 ((𝜑𝑃 = 𝑀) → (abs‘(𝑄𝑃)) = (abs‘(𝑃𝑄)))
3124oveq2d 6809 . . . . . 6 ((𝜑𝑃 = 𝑀) → (𝑄𝑃) = (𝑄𝑀))
3231fveq2d 6336 . . . . 5 ((𝜑𝑃 = 𝑀) → (abs‘(𝑄𝑃)) = (abs‘(𝑄𝑀)))
3330, 32eqtr3d 2807 . . . 4 ((𝜑𝑃 = 𝑀) → (abs‘(𝑃𝑄)) = (abs‘(𝑄𝑀)))
3433oveq1d 6808 . . 3 ((𝜑𝑃 = 𝑀) → ((abs‘(𝑃𝑄))↑2) = ((abs‘(𝑄𝑀))↑2))
3513, 28, 343eqtr4rd 2816 . 2 ((𝜑𝑃 = 𝑀) → ((abs‘(𝑃𝑄))↑2) = (((abs‘(𝑄𝑀))↑2) + ((abs‘(𝑃𝑀))↑2)))
3622, 7subcld 10594 . . . . . . . 8 (𝜑 → (𝑃𝑀) ∈ ℂ)
3736abscld 14383 . . . . . . 7 (𝜑 → (abs‘(𝑃𝑀)) ∈ ℝ)
3837recnd 10270 . . . . . 6 (𝜑 → (abs‘(𝑃𝑀)) ∈ ℂ)
3938sqcld 13213 . . . . 5 (𝜑 → ((abs‘(𝑃𝑀))↑2) ∈ ℂ)
4039adantr 466 . . . 4 ((𝜑𝑄 = 𝑀) → ((abs‘(𝑃𝑀))↑2) ∈ ℂ)
4140addid2d 10439 . . 3 ((𝜑𝑄 = 𝑀) → (0 + ((abs‘(𝑃𝑀))↑2)) = ((abs‘(𝑃𝑀))↑2))
421adantr 466 . . . . . . 7 ((𝜑𝑄 = 𝑀) → 𝑄 ∈ ℂ)
43 simpr 471 . . . . . . 7 ((𝜑𝑄 = 𝑀) → 𝑄 = 𝑀)
4442, 43subeq0bd 10658 . . . . . 6 ((𝜑𝑄 = 𝑀) → (𝑄𝑀) = 0)
4544abs00bd 14239 . . . . 5 ((𝜑𝑄 = 𝑀) → (abs‘(𝑄𝑀)) = 0)
4645sq0id 13164 . . . 4 ((𝜑𝑄 = 𝑀) → ((abs‘(𝑄𝑀))↑2) = 0)
4746oveq1d 6808 . . 3 ((𝜑𝑄 = 𝑀) → (((abs‘(𝑄𝑀))↑2) + ((abs‘(𝑃𝑀))↑2)) = (0 + ((abs‘(𝑃𝑀))↑2)))
4843oveq2d 6809 . . . . 5 ((𝜑𝑄 = 𝑀) → (𝑃𝑄) = (𝑃𝑀))
4948fveq2d 6336 . . . 4 ((𝜑𝑄 = 𝑀) → (abs‘(𝑃𝑄)) = (abs‘(𝑃𝑀)))
5049oveq1d 6808 . . 3 ((𝜑𝑄 = 𝑀) → ((abs‘(𝑃𝑄))↑2) = ((abs‘(𝑃𝑀))↑2))
5141, 47, 503eqtr4rd 2816 . 2 ((𝜑𝑄 = 𝑀) → ((abs‘(𝑃𝑄))↑2) = (((abs‘(𝑄𝑀))↑2) + ((abs‘(𝑃𝑀))↑2)))
5222adantr 466 . . 3 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝑃 ∈ ℂ)
531adantr 466 . . 3 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝑄 ∈ ℂ)
547adantr 466 . . 3 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝑀 ∈ ℂ)
55 simprl 754 . . 3 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝑃𝑀)
56 simprr 756 . . 3 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝑄𝑀)
57 eqid 2771 . . . 4 (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
583adantr 466 . . . 4 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝐴 ∈ ℂ)
594adantr 466 . . . 4 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝐵 ∈ ℂ)
6015adantr 466 . . . 4 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝑋 ∈ ℝ)
612adantr 466 . . . 4 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝑀 = ((𝐴 + 𝐵) / 2))
6214adantr 466 . . . 4 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)))
63 chordthmlem3.ABequidistQ . . . . 5 (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
6463adantr 466 . . . 4 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
6557, 58, 59, 53, 60, 61, 62, 64, 55, 56chordthmlem2 24781 . . 3 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → ((𝑄𝑀)(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))(𝑃𝑀)) ∈ {(π / 2), -(π / 2)})
66 eqid 2771 . . . 4 (abs‘(𝑄𝑀)) = (abs‘(𝑄𝑀))
67 eqid 2771 . . . 4 (abs‘(𝑃𝑀)) = (abs‘(𝑃𝑀))
68 eqid 2771 . . . 4 (abs‘(𝑃𝑄)) = (abs‘(𝑃𝑄))
69 eqid 2771 . . . 4 ((𝑄𝑀)(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))(𝑃𝑀)) = ((𝑄𝑀)(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))(𝑃𝑀))
7057, 66, 67, 68, 69pythag 24768 . . 3 (((𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑀 ∈ ℂ) ∧ (𝑃𝑀𝑄𝑀) ∧ ((𝑄𝑀)(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))(𝑃𝑀)) ∈ {(π / 2), -(π / 2)}) → ((abs‘(𝑃𝑄))↑2) = (((abs‘(𝑄𝑀))↑2) + ((abs‘(𝑃𝑀))↑2)))
7152, 53, 54, 55, 56, 65, 70syl321anc 1498 . 2 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → ((abs‘(𝑃𝑄))↑2) = (((abs‘(𝑄𝑀))↑2) + ((abs‘(𝑃𝑀))↑2)))
7235, 51, 71pm2.61da2ne 3031 1 (𝜑 → ((abs‘(𝑃𝑄))↑2) = (((abs‘(𝑄𝑀))↑2) + ((abs‘(𝑃𝑀))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  wne 2943  cdif 3720  {csn 4316  {cpr 4318  cfv 6031  (class class class)co 6793  cmpt2 6795  cc 10136  cr 10137  0cc0 10138  1c1 10139   + caddc 10141   · cmul 10143  cmin 10468  -cneg 10469   / cdiv 10886  2c2 11272  cexp 13067  cim 14046  abscabs 14182  πcpi 15003  logclog 24522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217  ax-mulf 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-map 8011  df-pm 8012  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-fi 8473  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ioc 12385  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14015  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-limsup 14410  df-clim 14427  df-rlim 14428  df-sum 14625  df-ef 15004  df-sin 15006  df-cos 15007  df-pi 15009  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-fbas 19958  df-fg 19959  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-ntr 21045  df-cls 21046  df-nei 21123  df-lp 21161  df-perf 21162  df-cn 21252  df-cnp 21253  df-haus 21340  df-tx 21586  df-hmeo 21779  df-fil 21870  df-fm 21962  df-flim 21963  df-flf 21964  df-xms 22345  df-ms 22346  df-tms 22347  df-cncf 22901  df-limc 23850  df-dv 23851  df-log 24524
This theorem is referenced by:  chordthmlem5  24784
  Copyright terms: Public domain W3C validator