![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > choccli | Structured version Visualization version GIF version |
Description: Closure of Cℋ orthocomplement. (Contributed by NM, 29-Jul-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
choccl.1 | ⊢ 𝐴 ∈ Cℋ |
Ref | Expression |
---|---|
choccli | ⊢ (⊥‘𝐴) ∈ Cℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | choccl.1 | . 2 ⊢ 𝐴 ∈ Cℋ | |
2 | choccl 28395 | . 2 ⊢ (𝐴 ∈ Cℋ → (⊥‘𝐴) ∈ Cℋ ) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (⊥‘𝐴) ∈ Cℋ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2103 ‘cfv 6001 Cℋ cch 28016 ⊥cort 28017 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-inf2 8651 ax-cnex 10105 ax-resscn 10106 ax-1cn 10107 ax-icn 10108 ax-addcl 10109 ax-addrcl 10110 ax-mulcl 10111 ax-mulrcl 10112 ax-mulcom 10113 ax-addass 10114 ax-mulass 10115 ax-distr 10116 ax-i2m1 10117 ax-1ne0 10118 ax-1rid 10119 ax-rnegex 10120 ax-rrecex 10121 ax-cnre 10122 ax-pre-lttri 10123 ax-pre-lttrn 10124 ax-pre-ltadd 10125 ax-pre-mulgt0 10126 ax-pre-sup 10127 ax-addf 10128 ax-mulf 10129 ax-hilex 28086 ax-hfvadd 28087 ax-hvcom 28088 ax-hvass 28089 ax-hv0cl 28090 ax-hvaddid 28091 ax-hfvmul 28092 ax-hvmulid 28093 ax-hvmulass 28094 ax-hvdistr1 28095 ax-hvdistr2 28096 ax-hvmul0 28097 ax-hfi 28166 ax-his1 28169 ax-his2 28170 ax-his3 28171 ax-his4 28172 ax-hcompl 28289 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-fal 1602 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rmo 3022 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-int 4584 df-iun 4630 df-iin 4631 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-se 5178 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-isom 6010 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-of 7014 df-om 7183 df-1st 7285 df-2nd 7286 df-supp 7416 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-1o 7680 df-2o 7681 df-oadd 7684 df-er 7862 df-map 7976 df-pm 7977 df-ixp 8026 df-en 8073 df-dom 8074 df-sdom 8075 df-fin 8076 df-fsupp 8392 df-fi 8433 df-sup 8464 df-inf 8465 df-oi 8531 df-card 8878 df-cda 9103 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 df-sub 10381 df-neg 10382 df-div 10798 df-nn 11134 df-2 11192 df-3 11193 df-4 11194 df-5 11195 df-6 11196 df-7 11197 df-8 11198 df-9 11199 df-n0 11406 df-z 11491 df-dec 11607 df-uz 11801 df-q 11903 df-rp 11947 df-xneg 12060 df-xadd 12061 df-xmul 12062 df-ioo 12293 df-icc 12296 df-fz 12441 df-fzo 12581 df-seq 12917 df-exp 12976 df-hash 13233 df-cj 13959 df-re 13960 df-im 13961 df-sqrt 14095 df-abs 14096 df-clim 14339 df-sum 14537 df-struct 15982 df-ndx 15983 df-slot 15984 df-base 15986 df-sets 15987 df-ress 15988 df-plusg 16077 df-mulr 16078 df-starv 16079 df-sca 16080 df-vsca 16081 df-ip 16082 df-tset 16083 df-ple 16084 df-ds 16087 df-unif 16088 df-hom 16089 df-cco 16090 df-rest 16206 df-topn 16207 df-0g 16225 df-gsum 16226 df-topgen 16227 df-pt 16228 df-prds 16231 df-xrs 16285 df-qtop 16290 df-imas 16291 df-xps 16293 df-mre 16369 df-mrc 16370 df-acs 16372 df-mgm 17364 df-sgrp 17406 df-mnd 17417 df-submnd 17458 df-mulg 17663 df-cntz 17871 df-cmn 18316 df-psmet 19861 df-xmet 19862 df-met 19863 df-bl 19864 df-mopn 19865 df-cnfld 19870 df-top 20822 df-topon 20839 df-topsp 20860 df-bases 20873 df-cn 21154 df-cnp 21155 df-lm 21156 df-haus 21242 df-tx 21488 df-hmeo 21681 df-xms 22247 df-ms 22248 df-tms 22249 df-cau 23175 df-grpo 27577 df-gid 27578 df-ginv 27579 df-gdiv 27580 df-ablo 27629 df-vc 27644 df-nv 27677 df-va 27680 df-ba 27681 df-sm 27682 df-0v 27683 df-vs 27684 df-nmcv 27685 df-ims 27686 df-dip 27786 df-hnorm 28055 df-hvsub 28058 df-hlim 28059 df-hcau 28060 df-sh 28294 df-ch 28308 df-oc 28339 |
This theorem is referenced by: pjoc1i 28520 pjoc2i 28527 chsscon3i 28550 chsscon1i 28551 chdmm1i 28566 chdmm2i 28567 chdmm3i 28568 chdmm4i 28569 chdmj1i 28570 chdmj2i 28571 chdmj3i 28572 chdmj4i 28573 sshhococi 28635 h1de2bi 28643 h1de2ctlem 28644 h1de2ci 28645 spanunsni 28668 pjoml2i 28674 pjoml3i 28675 pjoml4i 28676 pjoml6i 28678 cmcmlem 28680 cmcm2i 28682 cmcm3i 28683 cmcm4i 28684 cmbr2i 28685 cmbr3i 28689 cmbr4i 28690 cm0 28698 fh3i 28712 fh4i 28713 cm2mi 28715 qlax5i 28720 qlaxr3i 28725 osumcori 28732 osumcor2i 28733 spansnji 28735 3oalem5 28755 3oalem6 28756 3oai 28757 pjcompi 28761 pjadjii 28763 pjaddii 28764 pjmulii 28766 pjss2i 28769 pjssmii 28770 pjssge0ii 28771 pjcji 28773 pjocini 28787 pjds3i 28802 pjnormi 28810 pjpythi 28811 pjneli 28812 mayetes3i 28818 riesz3i 29151 pjnormssi 29257 pjssdif2i 29263 pjssdif1i 29264 pjimai 29265 pjoccoi 29267 pjtoi 29268 pjoci 29269 pjclem1 29284 pjci 29289 hst0 29322 sto1i 29325 sto2i 29326 stlei 29329 stji1i 29331 golem1 29360 golem2 29361 goeqi 29362 stcltrlem1 29365 stcltrlem2 29366 mdsldmd1i 29420 hatomistici 29451 cvexchi 29458 atomli 29471 atordi 29473 chirredlem4 29482 chirredi 29483 mdsymi 29500 cmmdi 29505 cmdmdi 29506 mdoc1i 29514 mdoc2i 29515 dmdoc1i 29516 dmdoc2i 29517 mdcompli 29518 dmdcompli 29519 mddmdin0i 29520 |
Copyright terms: Public domain | W3C validator |