HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  choc0 Structured version   Visualization version   GIF version

Theorem choc0 28490
Description: The orthocomplement of the zero subspace is the unit subspace. (Contributed by NM, 15-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
choc0 (⊥‘0) = ℋ

Proof of Theorem choc0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 h0elsh 28418 . . . 4 0S
2 shocel 28446 . . . 4 (0S → (𝑥 ∈ (⊥‘0) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ 0 (𝑥 ·ih 𝑦) = 0)))
31, 2ax-mp 5 . . 3 (𝑥 ∈ (⊥‘0) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ 0 (𝑥 ·ih 𝑦) = 0))
4 hi02 28259 . . . . 5 (𝑥 ∈ ℋ → (𝑥 ·ih 0) = 0)
5 df-ral 3051 . . . . . 6 (∀𝑦 ∈ 0 (𝑥 ·ih 𝑦) = 0 ↔ ∀𝑦(𝑦 ∈ 0 → (𝑥 ·ih 𝑦) = 0))
6 elch0 28416 . . . . . . . . 9 (𝑦 ∈ 0𝑦 = 0)
76imbi1i 338 . . . . . . . 8 ((𝑦 ∈ 0 → (𝑥 ·ih 𝑦) = 0) ↔ (𝑦 = 0 → (𝑥 ·ih 𝑦) = 0))
87albii 1892 . . . . . . 7 (∀𝑦(𝑦 ∈ 0 → (𝑥 ·ih 𝑦) = 0) ↔ ∀𝑦(𝑦 = 0 → (𝑥 ·ih 𝑦) = 0))
9 ax-hv0cl 28165 . . . . . . . . 9 0 ∈ ℋ
109elexi 3349 . . . . . . . 8 0 ∈ V
11 oveq2 6817 . . . . . . . . 9 (𝑦 = 0 → (𝑥 ·ih 𝑦) = (𝑥 ·ih 0))
1211eqeq1d 2758 . . . . . . . 8 (𝑦 = 0 → ((𝑥 ·ih 𝑦) = 0 ↔ (𝑥 ·ih 0) = 0))
1310, 12ceqsalv 3369 . . . . . . 7 (∀𝑦(𝑦 = 0 → (𝑥 ·ih 𝑦) = 0) ↔ (𝑥 ·ih 0) = 0)
148, 13bitri 264 . . . . . 6 (∀𝑦(𝑦 ∈ 0 → (𝑥 ·ih 𝑦) = 0) ↔ (𝑥 ·ih 0) = 0)
155, 14bitri 264 . . . . 5 (∀𝑦 ∈ 0 (𝑥 ·ih 𝑦) = 0 ↔ (𝑥 ·ih 0) = 0)
164, 15sylibr 224 . . . 4 (𝑥 ∈ ℋ → ∀𝑦 ∈ 0 (𝑥 ·ih 𝑦) = 0)
17 abai 871 . . . 4 ((𝑥 ∈ ℋ ∧ ∀𝑦 ∈ 0 (𝑥 ·ih 𝑦) = 0) ↔ (𝑥 ∈ ℋ ∧ (𝑥 ∈ ℋ → ∀𝑦 ∈ 0 (𝑥 ·ih 𝑦) = 0)))
1816, 17mpbiran2 992 . . 3 ((𝑥 ∈ ℋ ∧ ∀𝑦 ∈ 0 (𝑥 ·ih 𝑦) = 0) ↔ 𝑥 ∈ ℋ)
193, 18bitri 264 . 2 (𝑥 ∈ (⊥‘0) ↔ 𝑥 ∈ ℋ)
2019eqriv 2753 1 (⊥‘0) = ℋ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wal 1626   = wceq 1628  wcel 2135  wral 3046  cfv 6045  (class class class)co 6809  0cc0 10124  chil 28081   ·ih csp 28084  0c0v 28086   S csh 28090  cort 28092  0c0h 28097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-rep 4919  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110  ax-cnex 10180  ax-resscn 10181  ax-1cn 10182  ax-icn 10183  ax-addcl 10184  ax-addrcl 10185  ax-mulcl 10186  ax-mulrcl 10187  ax-mulcom 10188  ax-addass 10189  ax-mulass 10190  ax-distr 10191  ax-i2m1 10192  ax-1ne0 10193  ax-1rid 10194  ax-rnegex 10195  ax-rrecex 10196  ax-cnre 10197  ax-pre-lttri 10198  ax-pre-lttrn 10199  ax-pre-ltadd 10200  ax-pre-mulgt0 10201  ax-pre-sup 10202  ax-addf 10203  ax-mulf 10204  ax-hilex 28161  ax-hfvadd 28162  ax-hvcom 28163  ax-hvass 28164  ax-hv0cl 28165  ax-hvaddid 28166  ax-hfvmul 28167  ax-hvmulid 28168  ax-hvmulass 28169  ax-hvdistr1 28170  ax-hvdistr2 28171  ax-hvmul0 28172  ax-hfi 28241  ax-his1 28244  ax-his2 28245  ax-his3 28246  ax-his4 28247
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-nel 3032  df-ral 3051  df-rex 3052  df-reu 3053  df-rmo 3054  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-pss 3727  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4585  df-iun 4670  df-br 4801  df-opab 4861  df-mpt 4878  df-tr 4901  df-id 5170  df-eprel 5175  df-po 5183  df-so 5184  df-fr 5221  df-we 5223  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-pred 5837  df-ord 5883  df-on 5884  df-lim 5885  df-suc 5886  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-riota 6770  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-om 7227  df-1st 7329  df-2nd 7330  df-wrecs 7572  df-recs 7633  df-rdg 7671  df-er 7907  df-map 8021  df-pm 8022  df-en 8118  df-dom 8119  df-sdom 8120  df-sup 8509  df-inf 8510  df-pnf 10264  df-mnf 10265  df-xr 10266  df-ltxr 10267  df-le 10268  df-sub 10456  df-neg 10457  df-div 10873  df-nn 11209  df-2 11267  df-3 11268  df-4 11269  df-n0 11481  df-z 11566  df-uz 11876  df-q 11978  df-rp 12022  df-xneg 12135  df-xadd 12136  df-xmul 12137  df-icc 12371  df-seq 12992  df-exp 13051  df-cj 14034  df-re 14035  df-im 14036  df-sqrt 14170  df-abs 14171  df-topgen 16302  df-psmet 19936  df-xmet 19937  df-met 19938  df-bl 19939  df-mopn 19940  df-top 20897  df-topon 20914  df-bases 20948  df-lm 21231  df-haus 21317  df-grpo 27652  df-gid 27653  df-ginv 27654  df-gdiv 27655  df-ablo 27704  df-vc 27719  df-nv 27752  df-va 27755  df-ba 27756  df-sm 27757  df-0v 27758  df-vs 27759  df-nmcv 27760  df-ims 27761  df-hnorm 28130  df-hvsub 28133  df-hlim 28134  df-sh 28369  df-ch 28383  df-oc 28414  df-ch0 28415
This theorem is referenced by:  choc1  28491  ssjo  28611  qlaxr3i  28800  riesz3i  29226  chirredi  29558  mdsymi  29575
  Copyright terms: Public domain W3C validator