![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > choc0 | Structured version Visualization version GIF version |
Description: The orthocomplement of the zero subspace is the unit subspace. (Contributed by NM, 15-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
choc0 | ⊢ (⊥‘0ℋ) = ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | h0elsh 28418 | . . . 4 ⊢ 0ℋ ∈ Sℋ | |
2 | shocel 28446 | . . . 4 ⊢ (0ℋ ∈ Sℋ → (𝑥 ∈ (⊥‘0ℋ) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ 0ℋ (𝑥 ·ih 𝑦) = 0))) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (𝑥 ∈ (⊥‘0ℋ) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ 0ℋ (𝑥 ·ih 𝑦) = 0)) |
4 | hi02 28259 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (𝑥 ·ih 0ℎ) = 0) | |
5 | df-ral 3051 | . . . . . 6 ⊢ (∀𝑦 ∈ 0ℋ (𝑥 ·ih 𝑦) = 0 ↔ ∀𝑦(𝑦 ∈ 0ℋ → (𝑥 ·ih 𝑦) = 0)) | |
6 | elch0 28416 | . . . . . . . . 9 ⊢ (𝑦 ∈ 0ℋ ↔ 𝑦 = 0ℎ) | |
7 | 6 | imbi1i 338 | . . . . . . . 8 ⊢ ((𝑦 ∈ 0ℋ → (𝑥 ·ih 𝑦) = 0) ↔ (𝑦 = 0ℎ → (𝑥 ·ih 𝑦) = 0)) |
8 | 7 | albii 1892 | . . . . . . 7 ⊢ (∀𝑦(𝑦 ∈ 0ℋ → (𝑥 ·ih 𝑦) = 0) ↔ ∀𝑦(𝑦 = 0ℎ → (𝑥 ·ih 𝑦) = 0)) |
9 | ax-hv0cl 28165 | . . . . . . . . 9 ⊢ 0ℎ ∈ ℋ | |
10 | 9 | elexi 3349 | . . . . . . . 8 ⊢ 0ℎ ∈ V |
11 | oveq2 6817 | . . . . . . . . 9 ⊢ (𝑦 = 0ℎ → (𝑥 ·ih 𝑦) = (𝑥 ·ih 0ℎ)) | |
12 | 11 | eqeq1d 2758 | . . . . . . . 8 ⊢ (𝑦 = 0ℎ → ((𝑥 ·ih 𝑦) = 0 ↔ (𝑥 ·ih 0ℎ) = 0)) |
13 | 10, 12 | ceqsalv 3369 | . . . . . . 7 ⊢ (∀𝑦(𝑦 = 0ℎ → (𝑥 ·ih 𝑦) = 0) ↔ (𝑥 ·ih 0ℎ) = 0) |
14 | 8, 13 | bitri 264 | . . . . . 6 ⊢ (∀𝑦(𝑦 ∈ 0ℋ → (𝑥 ·ih 𝑦) = 0) ↔ (𝑥 ·ih 0ℎ) = 0) |
15 | 5, 14 | bitri 264 | . . . . 5 ⊢ (∀𝑦 ∈ 0ℋ (𝑥 ·ih 𝑦) = 0 ↔ (𝑥 ·ih 0ℎ) = 0) |
16 | 4, 15 | sylibr 224 | . . . 4 ⊢ (𝑥 ∈ ℋ → ∀𝑦 ∈ 0ℋ (𝑥 ·ih 𝑦) = 0) |
17 | abai 871 | . . . 4 ⊢ ((𝑥 ∈ ℋ ∧ ∀𝑦 ∈ 0ℋ (𝑥 ·ih 𝑦) = 0) ↔ (𝑥 ∈ ℋ ∧ (𝑥 ∈ ℋ → ∀𝑦 ∈ 0ℋ (𝑥 ·ih 𝑦) = 0))) | |
18 | 16, 17 | mpbiran2 992 | . . 3 ⊢ ((𝑥 ∈ ℋ ∧ ∀𝑦 ∈ 0ℋ (𝑥 ·ih 𝑦) = 0) ↔ 𝑥 ∈ ℋ) |
19 | 3, 18 | bitri 264 | . 2 ⊢ (𝑥 ∈ (⊥‘0ℋ) ↔ 𝑥 ∈ ℋ) |
20 | 19 | eqriv 2753 | 1 ⊢ (⊥‘0ℋ) = ℋ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∀wal 1626 = wceq 1628 ∈ wcel 2135 ∀wral 3046 ‘cfv 6045 (class class class)co 6809 0cc0 10124 ℋchil 28081 ·ih csp 28084 0ℎc0v 28086 Sℋ csh 28090 ⊥cort 28092 0ℋc0h 28097 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-8 2137 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-rep 4919 ax-sep 4929 ax-nul 4937 ax-pow 4988 ax-pr 5051 ax-un 7110 ax-cnex 10180 ax-resscn 10181 ax-1cn 10182 ax-icn 10183 ax-addcl 10184 ax-addrcl 10185 ax-mulcl 10186 ax-mulrcl 10187 ax-mulcom 10188 ax-addass 10189 ax-mulass 10190 ax-distr 10191 ax-i2m1 10192 ax-1ne0 10193 ax-1rid 10194 ax-rnegex 10195 ax-rrecex 10196 ax-cnre 10197 ax-pre-lttri 10198 ax-pre-lttrn 10199 ax-pre-ltadd 10200 ax-pre-mulgt0 10201 ax-pre-sup 10202 ax-addf 10203 ax-mulf 10204 ax-hilex 28161 ax-hfvadd 28162 ax-hvcom 28163 ax-hvass 28164 ax-hv0cl 28165 ax-hvaddid 28166 ax-hfvmul 28167 ax-hvmulid 28168 ax-hvmulass 28169 ax-hvdistr1 28170 ax-hvdistr2 28171 ax-hvmul0 28172 ax-hfi 28241 ax-his1 28244 ax-his2 28245 ax-his3 28246 ax-his4 28247 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ne 2929 df-nel 3032 df-ral 3051 df-rex 3052 df-reu 3053 df-rmo 3054 df-rab 3055 df-v 3338 df-sbc 3573 df-csb 3671 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-pss 3727 df-nul 4055 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4585 df-iun 4670 df-br 4801 df-opab 4861 df-mpt 4878 df-tr 4901 df-id 5170 df-eprel 5175 df-po 5183 df-so 5184 df-fr 5221 df-we 5223 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-rn 5273 df-res 5274 df-ima 5275 df-pred 5837 df-ord 5883 df-on 5884 df-lim 5885 df-suc 5886 df-iota 6008 df-fun 6047 df-fn 6048 df-f 6049 df-f1 6050 df-fo 6051 df-f1o 6052 df-fv 6053 df-riota 6770 df-ov 6812 df-oprab 6813 df-mpt2 6814 df-om 7227 df-1st 7329 df-2nd 7330 df-wrecs 7572 df-recs 7633 df-rdg 7671 df-er 7907 df-map 8021 df-pm 8022 df-en 8118 df-dom 8119 df-sdom 8120 df-sup 8509 df-inf 8510 df-pnf 10264 df-mnf 10265 df-xr 10266 df-ltxr 10267 df-le 10268 df-sub 10456 df-neg 10457 df-div 10873 df-nn 11209 df-2 11267 df-3 11268 df-4 11269 df-n0 11481 df-z 11566 df-uz 11876 df-q 11978 df-rp 12022 df-xneg 12135 df-xadd 12136 df-xmul 12137 df-icc 12371 df-seq 12992 df-exp 13051 df-cj 14034 df-re 14035 df-im 14036 df-sqrt 14170 df-abs 14171 df-topgen 16302 df-psmet 19936 df-xmet 19937 df-met 19938 df-bl 19939 df-mopn 19940 df-top 20897 df-topon 20914 df-bases 20948 df-lm 21231 df-haus 21317 df-grpo 27652 df-gid 27653 df-ginv 27654 df-gdiv 27655 df-ablo 27704 df-vc 27719 df-nv 27752 df-va 27755 df-ba 27756 df-sm 27757 df-0v 27758 df-vs 27759 df-nmcv 27760 df-ims 27761 df-hnorm 28130 df-hvsub 28133 df-hlim 28134 df-sh 28369 df-ch 28383 df-oc 28414 df-ch0 28415 |
This theorem is referenced by: choc1 28491 ssjo 28611 qlaxr3i 28800 riesz3i 29226 chirredi 29558 mdsymi 29575 |
Copyright terms: Public domain | W3C validator |