Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  chmatval Structured version   Visualization version   GIF version

Theorem chmatval 20682
 Description: The entries of the characteristic matrix of a matrix. (Contributed by AV, 2-Aug-2019.) (Proof shortened by AV, 10-Dec-2019.)
Hypotheses
Ref Expression
chmatcl.a 𝐴 = (𝑁 Mat 𝑅)
chmatcl.b 𝐵 = (Base‘𝐴)
chmatcl.p 𝑃 = (Poly1𝑅)
chmatcl.y 𝑌 = (𝑁 Mat 𝑃)
chmatcl.x 𝑋 = (var1𝑅)
chmatcl.t 𝑇 = (𝑁 matToPolyMat 𝑅)
chmatcl.s = (-g𝑌)
chmatcl.m · = ( ·𝑠𝑌)
chmatcl.1 1 = (1r𝑌)
chmatcl.h 𝐻 = ((𝑋 · 1 ) (𝑇𝑀))
chmatval.s = (-g𝑃)
chmatval.0 0 = (0g𝑃)
Assertion
Ref Expression
chmatval (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼𝐻𝐽) = if(𝐼 = 𝐽, (𝑋 (𝐼(𝑇𝑀)𝐽)), ( 0 (𝐼(𝑇𝑀)𝐽))))

Proof of Theorem chmatval
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 chmatcl.h . . . 4 𝐻 = ((𝑋 · 1 ) (𝑇𝑀))
21oveqi 6703 . . 3 (𝐼𝐻𝐽) = (𝐼((𝑋 · 1 ) (𝑇𝑀))𝐽)
3 chmatcl.p . . . . . . 7 𝑃 = (Poly1𝑅)
43ply1ring 19666 . . . . . 6 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
543ad2ant2 1103 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑃 ∈ Ring)
65adantr 480 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑃 ∈ Ring)
74anim2i 592 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring))
873adant3 1101 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring))
9 chmatcl.x . . . . . . . 8 𝑋 = (var1𝑅)
10 eqid 2651 . . . . . . . 8 (Base‘𝑃) = (Base‘𝑃)
119, 3, 10vr1cl 19635 . . . . . . 7 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
12113ad2ant2 1103 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑋 ∈ (Base‘𝑃))
13 chmatcl.y . . . . . . . . 9 𝑌 = (𝑁 Mat 𝑃)
143, 13pmatring 20546 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ Ring)
15143adant3 1101 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑌 ∈ Ring)
16 eqid 2651 . . . . . . . 8 (Base‘𝑌) = (Base‘𝑌)
17 chmatcl.1 . . . . . . . 8 1 = (1r𝑌)
1816, 17ringidcl 18614 . . . . . . 7 (𝑌 ∈ Ring → 1 ∈ (Base‘𝑌))
1915, 18syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 1 ∈ (Base‘𝑌))
20 chmatcl.m . . . . . . 7 · = ( ·𝑠𝑌)
2110, 13, 16, 20matvscl 20285 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) ∧ (𝑋 ∈ (Base‘𝑃) ∧ 1 ∈ (Base‘𝑌))) → (𝑋 · 1 ) ∈ (Base‘𝑌))
228, 12, 19, 21syl12anc 1364 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑋 · 1 ) ∈ (Base‘𝑌))
2322adantr 480 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝑋 · 1 ) ∈ (Base‘𝑌))
24 chmatcl.t . . . . . 6 𝑇 = (𝑁 matToPolyMat 𝑅)
25 chmatcl.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
26 chmatcl.b . . . . . 6 𝐵 = (Base‘𝐴)
2724, 25, 26, 3, 13mat2pmatbas 20579 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝑌))
2827adantr 480 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝑇𝑀) ∈ (Base‘𝑌))
29 simpr 476 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼𝑁𝐽𝑁))
30 chmatcl.s . . . . 5 = (-g𝑌)
31 chmatval.s . . . . 5 = (-g𝑃)
3213, 16, 30, 31matsubgcell 20288 . . . 4 ((𝑃 ∈ Ring ∧ ((𝑋 · 1 ) ∈ (Base‘𝑌) ∧ (𝑇𝑀) ∈ (Base‘𝑌)) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼((𝑋 · 1 ) (𝑇𝑀))𝐽) = ((𝐼(𝑋 · 1 )𝐽) (𝐼(𝑇𝑀)𝐽)))
336, 23, 28, 29, 32syl121anc 1371 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼((𝑋 · 1 ) (𝑇𝑀))𝐽) = ((𝐼(𝑋 · 1 )𝐽) (𝐼(𝑇𝑀)𝐽)))
342, 33syl5eq 2697 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼𝐻𝐽) = ((𝐼(𝑋 · 1 )𝐽) (𝐼(𝑇𝑀)𝐽)))
3517a1i 11 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 1 = (1r𝑌))
3635oveq2d 6706 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝑋 · 1 ) = (𝑋 · (1r𝑌)))
37 simpl 472 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑁 ∈ Fin)
384adantl 481 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑃 ∈ Ring)
3911adantl 481 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑋 ∈ (Base‘𝑃))
4037, 38, 393jca 1261 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃)))
41403adant3 1101 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃)))
4241adantr 480 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃)))
43 chmatval.0 . . . . . . . 8 0 = (0g𝑃)
4413, 10, 20, 43matsc 20304 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃)) → (𝑋 · (1r𝑌)) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 𝑋, 0 )))
4542, 44syl 17 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝑋 · (1r𝑌)) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 𝑋, 0 )))
4636, 45eqtrd 2685 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝑋 · 1 ) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 𝑋, 0 )))
47 eqeq12 2664 . . . . . . 7 ((𝑖 = 𝐼𝑗 = 𝐽) → (𝑖 = 𝑗𝐼 = 𝐽))
4847ifbid 4141 . . . . . 6 ((𝑖 = 𝐼𝑗 = 𝐽) → if(𝑖 = 𝑗, 𝑋, 0 ) = if(𝐼 = 𝐽, 𝑋, 0 ))
4948adantl 481 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → if(𝑖 = 𝑗, 𝑋, 0 ) = if(𝐼 = 𝐽, 𝑋, 0 ))
50 simprl 809 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝐼𝑁)
51 simpr 476 . . . . . 6 ((𝐼𝑁𝐽𝑁) → 𝐽𝑁)
5251adantl 481 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝐽𝑁)
53 fvex 6239 . . . . . . . 8 (var1𝑅) ∈ V
549, 53eqeltri 2726 . . . . . . 7 𝑋 ∈ V
55 fvex 6239 . . . . . . . 8 (0g𝑃) ∈ V
5643, 55eqeltri 2726 . . . . . . 7 0 ∈ V
5754, 56ifex 4189 . . . . . 6 if(𝐼 = 𝐽, 𝑋, 0 ) ∈ V
5857a1i 11 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → if(𝐼 = 𝐽, 𝑋, 0 ) ∈ V)
5946, 49, 50, 52, 58ovmpt2d 6830 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋 · 1 )𝐽) = if(𝐼 = 𝐽, 𝑋, 0 ))
6059oveq1d 6705 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → ((𝐼(𝑋 · 1 )𝐽) (𝐼(𝑇𝑀)𝐽)) = (if(𝐼 = 𝐽, 𝑋, 0 ) (𝐼(𝑇𝑀)𝐽)))
61 ovif 6779 . . 3 (if(𝐼 = 𝐽, 𝑋, 0 ) (𝐼(𝑇𝑀)𝐽)) = if(𝐼 = 𝐽, (𝑋 (𝐼(𝑇𝑀)𝐽)), ( 0 (𝐼(𝑇𝑀)𝐽)))
6260, 61syl6eq 2701 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → ((𝐼(𝑋 · 1 )𝐽) (𝐼(𝑇𝑀)𝐽)) = if(𝐼 = 𝐽, (𝑋 (𝐼(𝑇𝑀)𝐽)), ( 0 (𝐼(𝑇𝑀)𝐽))))
6334, 62eqtrd 2685 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼𝐻𝐽) = if(𝐼 = 𝐽, (𝑋 (𝐼(𝑇𝑀)𝐽)), ( 0 (𝐼(𝑇𝑀)𝐽))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030  Vcvv 3231  ifcif 4119  ‘cfv 5926  (class class class)co 6690   ↦ cmpt2 6692  Fincfn 7997  Basecbs 15904   ·𝑠 cvsca 15992  0gc0g 16147  -gcsg 17471  1rcur 18547  Ringcrg 18593  var1cv1 19594  Poly1cpl1 19595   Mat cmat 20261   matToPolyMat cmat2pmat 20557 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-ot 4219  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-ofr 6940  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-sup 8389  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-fz 12365  df-fzo 12505  df-seq 12842  df-hash 13158  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-hom 16013  df-cco 16014  df-0g 16149  df-gsum 16150  df-prds 16155  df-pws 16157  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-submnd 17383  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mulg 17588  df-subg 17638  df-ghm 17705  df-cntz 17796  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-subrg 18826  df-lmod 18913  df-lss 18981  df-sra 19220  df-rgmod 19221  df-ascl 19362  df-psr 19404  df-mvr 19405  df-mpl 19406  df-opsr 19408  df-psr1 19598  df-vr1 19599  df-ply1 19600  df-dsmm 20124  df-frlm 20139  df-mamu 20238  df-mat 20262  df-mat2pmat 20560 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator