MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chfacfscmul0 Structured version   Visualization version   GIF version

Theorem chfacfscmul0 20885
Description: A scaled value of the "characteristic factor function" is zero almost always. (Contributed by AV, 9-Nov-2019.)
Hypotheses
Ref Expression
chfacfisf.a 𝐴 = (𝑁 Mat 𝑅)
chfacfisf.b 𝐵 = (Base‘𝐴)
chfacfisf.p 𝑃 = (Poly1𝑅)
chfacfisf.y 𝑌 = (𝑁 Mat 𝑃)
chfacfisf.r × = (.r𝑌)
chfacfisf.s = (-g𝑌)
chfacfisf.0 0 = (0g𝑌)
chfacfisf.t 𝑇 = (𝑁 matToPolyMat 𝑅)
chfacfisf.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
chfacfscmulcl.x 𝑋 = (var1𝑅)
chfacfscmulcl.m · = ( ·𝑠𝑌)
chfacfscmulcl.e = (.g‘(mulGrp‘𝑃))
Assertion
Ref Expression
chfacfscmul0 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) ∧ 𝐾 ∈ (ℤ‘(𝑠 + 2))) → ((𝐾 𝑋) · (𝐺𝐾)) = 0 )
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑛,𝑌   𝑛,𝑏   𝑛,𝑠,𝐵   𝑛,𝐾   0 ,𝑛
Allowed substitution hints:   𝐴(𝑛,𝑠,𝑏)   𝐵(𝑏)   𝑃(𝑛,𝑠,𝑏)   𝑅(𝑠,𝑏)   𝑇(𝑛,𝑠,𝑏)   · (𝑛,𝑠,𝑏)   × (𝑛,𝑠,𝑏)   (𝑛,𝑠,𝑏)   𝐺(𝑛,𝑠,𝑏)   𝐾(𝑠,𝑏)   𝑀(𝑠,𝑏)   (𝑛,𝑠,𝑏)   𝑁(𝑠,𝑏)   𝑋(𝑛,𝑠,𝑏)   𝑌(𝑠,𝑏)   0 (𝑠,𝑏)

Proof of Theorem chfacfscmul0
StepHypRef Expression
1 eluz2 11905 . . . . . 6 (𝐾 ∈ (ℤ‘(𝑠 + 2)) ↔ ((𝑠 + 2) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑠 + 2) ≤ 𝐾))
2 simpll 807 . . . . . . . . . . . 12 (((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) ∧ (𝑠 + 2) ≤ 𝐾) → 𝐾 ∈ ℤ)
3 nngt0 11261 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℕ → 0 < 𝑠)
4 nnre 11239 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℕ → 𝑠 ∈ ℝ)
54adantl 473 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → 𝑠 ∈ ℝ)
6 2rp 12050 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℝ+
76a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → 2 ∈ ℝ+)
85, 7ltaddrpd 12118 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → 𝑠 < (𝑠 + 2))
9 0red 10253 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → 0 ∈ ℝ)
10 2re 11302 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℝ
1110a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → 2 ∈ ℝ)
125, 11readdcld 10281 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → (𝑠 + 2) ∈ ℝ)
13 lttr 10326 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ ℝ ∧ 𝑠 ∈ ℝ ∧ (𝑠 + 2) ∈ ℝ) → ((0 < 𝑠𝑠 < (𝑠 + 2)) → 0 < (𝑠 + 2)))
149, 5, 12, 13syl3anc 1477 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → ((0 < 𝑠𝑠 < (𝑠 + 2)) → 0 < (𝑠 + 2)))
158, 14mpan2d 712 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → (0 < 𝑠 → 0 < (𝑠 + 2)))
1615ex 449 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ ℤ → (𝑠 ∈ ℕ → (0 < 𝑠 → 0 < (𝑠 + 2))))
1716com13 88 . . . . . . . . . . . . . . . 16 (0 < 𝑠 → (𝑠 ∈ ℕ → (𝐾 ∈ ℤ → 0 < (𝑠 + 2))))
183, 17mpcom 38 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℕ → (𝐾 ∈ ℤ → 0 < (𝑠 + 2)))
1918impcom 445 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → 0 < (𝑠 + 2))
20 zre 11593 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
2120adantr 472 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → 𝐾 ∈ ℝ)
22 ltleletr 10342 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ (𝑠 + 2) ∈ ℝ ∧ 𝐾 ∈ ℝ) → ((0 < (𝑠 + 2) ∧ (𝑠 + 2) ≤ 𝐾) → 0 ≤ 𝐾))
239, 12, 21, 22syl3anc 1477 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → ((0 < (𝑠 + 2) ∧ (𝑠 + 2) ≤ 𝐾) → 0 ≤ 𝐾))
2419, 23mpand 713 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → ((𝑠 + 2) ≤ 𝐾 → 0 ≤ 𝐾))
2524imp 444 . . . . . . . . . . . 12 (((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) ∧ (𝑠 + 2) ≤ 𝐾) → 0 ≤ 𝐾)
26 elnn0z 11602 . . . . . . . . . . . 12 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾))
272, 25, 26sylanbrc 701 . . . . . . . . . . 11 (((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) ∧ (𝑠 + 2) ≤ 𝐾) → 𝐾 ∈ ℕ0)
28 nncn 11240 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℕ → 𝑠 ∈ ℂ)
29 add1p1 11495 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℂ → ((𝑠 + 1) + 1) = (𝑠 + 2))
3028, 29syl 17 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℕ → ((𝑠 + 1) + 1) = (𝑠 + 2))
3130adantl 473 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → ((𝑠 + 1) + 1) = (𝑠 + 2))
3231eqcomd 2766 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → (𝑠 + 2) = ((𝑠 + 1) + 1))
3332breq1d 4814 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → ((𝑠 + 2) ≤ 𝐾 ↔ ((𝑠 + 1) + 1) ≤ 𝐾))
34 nnz 11611 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℕ → 𝑠 ∈ ℤ)
3534peano2zd 11697 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ ℤ)
3635anim2i 594 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → (𝐾 ∈ ℤ ∧ (𝑠 + 1) ∈ ℤ))
3736ancomd 466 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → ((𝑠 + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ))
38 zltp1le 11639 . . . . . . . . . . . . . . 15 (((𝑠 + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑠 + 1) < 𝐾 ↔ ((𝑠 + 1) + 1) ≤ 𝐾))
3938bicomd 213 . . . . . . . . . . . . . 14 (((𝑠 + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) → (((𝑠 + 1) + 1) ≤ 𝐾 ↔ (𝑠 + 1) < 𝐾))
4037, 39syl 17 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → (((𝑠 + 1) + 1) ≤ 𝐾 ↔ (𝑠 + 1) < 𝐾))
4133, 40bitrd 268 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → ((𝑠 + 2) ≤ 𝐾 ↔ (𝑠 + 1) < 𝐾))
4241biimpa 502 . . . . . . . . . . 11 (((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) ∧ (𝑠 + 2) ≤ 𝐾) → (𝑠 + 1) < 𝐾)
4327, 42jca 555 . . . . . . . . . 10 (((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) ∧ (𝑠 + 2) ≤ 𝐾) → (𝐾 ∈ ℕ0 ∧ (𝑠 + 1) < 𝐾))
4443ex 449 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → ((𝑠 + 2) ≤ 𝐾 → (𝐾 ∈ ℕ0 ∧ (𝑠 + 1) < 𝐾)))
4544impancom 455 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ (𝑠 + 2) ≤ 𝐾) → (𝑠 ∈ ℕ → (𝐾 ∈ ℕ0 ∧ (𝑠 + 1) < 𝐾)))
46453adant1 1125 . . . . . . 7 (((𝑠 + 2) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑠 + 2) ≤ 𝐾) → (𝑠 ∈ ℕ → (𝐾 ∈ ℕ0 ∧ (𝑠 + 1) < 𝐾)))
4746com12 32 . . . . . 6 (𝑠 ∈ ℕ → (((𝑠 + 2) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑠 + 2) ≤ 𝐾) → (𝐾 ∈ ℕ0 ∧ (𝑠 + 1) < 𝐾)))
481, 47syl5bi 232 . . . . 5 (𝑠 ∈ ℕ → (𝐾 ∈ (ℤ‘(𝑠 + 2)) → (𝐾 ∈ ℕ0 ∧ (𝑠 + 1) < 𝐾)))
4948adantr 472 . . . 4 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → (𝐾 ∈ (ℤ‘(𝑠 + 2)) → (𝐾 ∈ ℕ0 ∧ (𝑠 + 1) < 𝐾)))
5049adantl 473 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝐾 ∈ (ℤ‘(𝑠 + 2)) → (𝐾 ∈ ℕ0 ∧ (𝑠 + 1) < 𝐾)))
51 chfacfisf.g . . . . . . . 8 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
5251a1i 11 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))))))))
53 0red 10253 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → 0 ∈ ℝ)
54 peano2re 10421 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℝ → (𝑠 + 1) ∈ ℝ)
554, 54syl 17 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ ℝ)
5655adantr 472 . . . . . . . . . . . . . . . 16 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → (𝑠 + 1) ∈ ℝ)
5756adantl 473 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑠 + 1) ∈ ℝ)
5857ad2antrr 764 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → (𝑠 + 1) ∈ ℝ)
59 nn0re 11513 . . . . . . . . . . . . . . 15 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
6059ad2antlr 765 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → 𝐾 ∈ ℝ)
61 nnnn0 11511 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℕ → 𝑠 ∈ ℕ0)
6261adantr 472 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → 𝑠 ∈ ℕ0)
6362ad2antlr 765 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) → 𝑠 ∈ ℕ0)
64 nn0p1gt0 11534 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℕ0 → 0 < (𝑠 + 1))
6563, 64syl 17 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) → 0 < (𝑠 + 1))
6665adantr 472 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → 0 < (𝑠 + 1))
67 simpr 479 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → (𝑠 + 1) < 𝐾)
6853, 58, 60, 66, 67lttrd 10410 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → 0 < 𝐾)
6968gt0ne0d 10804 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → 𝐾 ≠ 0)
7069neneqd 2937 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → ¬ 𝐾 = 0)
7170adantr 472 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → ¬ 𝐾 = 0)
72 eqeq1 2764 . . . . . . . . . . . 12 (𝑛 = 𝐾 → (𝑛 = 0 ↔ 𝐾 = 0))
7372notbid 307 . . . . . . . . . . 11 (𝑛 = 𝐾 → (¬ 𝑛 = 0 ↔ ¬ 𝐾 = 0))
7473adantl 473 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → (¬ 𝑛 = 0 ↔ ¬ 𝐾 = 0))
7571, 74mpbird 247 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → ¬ 𝑛 = 0)
7675iffalsed 4241 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))) = if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))))))
7756ad2antlr 765 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) → (𝑠 + 1) ∈ ℝ)
78 ltne 10346 . . . . . . . . . . . . 13 (((𝑠 + 1) ∈ ℝ ∧ (𝑠 + 1) < 𝐾) → 𝐾 ≠ (𝑠 + 1))
7977, 78sylan 489 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → 𝐾 ≠ (𝑠 + 1))
8079neneqd 2937 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → ¬ 𝐾 = (𝑠 + 1))
8180adantr 472 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → ¬ 𝐾 = (𝑠 + 1))
82 eqeq1 2764 . . . . . . . . . . . 12 (𝑛 = 𝐾 → (𝑛 = (𝑠 + 1) ↔ 𝐾 = (𝑠 + 1)))
8382notbid 307 . . . . . . . . . . 11 (𝑛 = 𝐾 → (¬ 𝑛 = (𝑠 + 1) ↔ ¬ 𝐾 = (𝑠 + 1)))
8483adantl 473 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → (¬ 𝑛 = (𝑠 + 1) ↔ ¬ 𝐾 = (𝑠 + 1)))
8581, 84mpbird 247 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → ¬ 𝑛 = (𝑠 + 1))
8685iffalsed 4241 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))))) = if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))
87 simplr 809 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → (𝑠 + 1) < 𝐾)
88 breq2 4808 . . . . . . . . . . 11 (𝑛 = 𝐾 → ((𝑠 + 1) < 𝑛 ↔ (𝑠 + 1) < 𝐾))
8988adantl 473 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → ((𝑠 + 1) < 𝑛 ↔ (𝑠 + 1) < 𝐾))
9087, 89mpbird 247 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → (𝑠 + 1) < 𝑛)
9190iftrued 4238 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))) = 0 )
9276, 86, 913eqtrd 2798 . . . . . . 7 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))) = 0 )
93 simplr 809 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → 𝐾 ∈ ℕ0)
94 chfacfisf.0 . . . . . . . . 9 0 = (0g𝑌)
95 fvex 6363 . . . . . . . . 9 (0g𝑌) ∈ V
9694, 95eqeltri 2835 . . . . . . . 8 0 ∈ V
9796a1i 11 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → 0 ∈ V)
9852, 92, 93, 97fvmptd 6451 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → (𝐺𝐾) = 0 )
9998oveq2d 6830 . . . . 5 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → ((𝐾 𝑋) · (𝐺𝐾)) = ((𝐾 𝑋) · 0 ))
100 crngring 18778 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
101 chfacfisf.p . . . . . . . . . . . 12 𝑃 = (Poly1𝑅)
102 chfacfisf.y . . . . . . . . . . . 12 𝑌 = (𝑁 Mat 𝑃)
103101, 102pmatlmod 20721 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ LMod)
104100, 103sylan2 492 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ LMod)
1051043adant3 1127 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ LMod)
106105ad2antrr 764 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) → 𝑌 ∈ LMod)
107101ply1ring 19840 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
108100, 107syl 17 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝑃 ∈ Ring)
1091083ad2ant2 1129 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑃 ∈ Ring)
110 eqid 2760 . . . . . . . . . . . . 13 (mulGrp‘𝑃) = (mulGrp‘𝑃)
111110ringmgp 18773 . . . . . . . . . . . 12 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
112109, 111syl 17 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (mulGrp‘𝑃) ∈ Mnd)
113112ad2antrr 764 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) → (mulGrp‘𝑃) ∈ Mnd)
114 simpr 479 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0)
1151003ad2ant2 1129 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
116 chfacfscmulcl.x . . . . . . . . . . . . 13 𝑋 = (var1𝑅)
117 eqid 2760 . . . . . . . . . . . . 13 (Base‘𝑃) = (Base‘𝑃)
118116, 101, 117vr1cl 19809 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
119115, 118syl 17 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑋 ∈ (Base‘𝑃))
120119ad2antrr 764 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) → 𝑋 ∈ (Base‘𝑃))
121110, 117mgpbas 18715 . . . . . . . . . . 11 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
122 chfacfscmulcl.e . . . . . . . . . . 11 = (.g‘(mulGrp‘𝑃))
123121, 122mulgnn0cl 17779 . . . . . . . . . 10 (((mulGrp‘𝑃) ∈ Mnd ∧ 𝐾 ∈ ℕ0𝑋 ∈ (Base‘𝑃)) → (𝐾 𝑋) ∈ (Base‘𝑃))
124113, 114, 120, 123syl3anc 1477 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) → (𝐾 𝑋) ∈ (Base‘𝑃))
125101ply1crng 19790 . . . . . . . . . . . . . . . 16 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
126125anim2i 594 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing))
1271263adant3 1127 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing))
128102matsca2 20448 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → 𝑃 = (Scalar‘𝑌))
129127, 128syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑃 = (Scalar‘𝑌))
130129eqcomd 2766 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Scalar‘𝑌) = 𝑃)
131130fveq2d 6357 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃))
132131eleq2d 2825 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝐾 𝑋) ∈ (Base‘(Scalar‘𝑌)) ↔ (𝐾 𝑋) ∈ (Base‘𝑃)))
133132ad2antrr 764 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) → ((𝐾 𝑋) ∈ (Base‘(Scalar‘𝑌)) ↔ (𝐾 𝑋) ∈ (Base‘𝑃)))
134124, 133mpbird 247 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) → (𝐾 𝑋) ∈ (Base‘(Scalar‘𝑌)))
135106, 134jca 555 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) → (𝑌 ∈ LMod ∧ (𝐾 𝑋) ∈ (Base‘(Scalar‘𝑌))))
136135adantr 472 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → (𝑌 ∈ LMod ∧ (𝐾 𝑋) ∈ (Base‘(Scalar‘𝑌))))
137 eqid 2760 . . . . . . 7 (Scalar‘𝑌) = (Scalar‘𝑌)
138 chfacfscmulcl.m . . . . . . 7 · = ( ·𝑠𝑌)
139 eqid 2760 . . . . . . 7 (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌))
140137, 138, 139, 94lmodvs0 19119 . . . . . 6 ((𝑌 ∈ LMod ∧ (𝐾 𝑋) ∈ (Base‘(Scalar‘𝑌))) → ((𝐾 𝑋) · 0 ) = 0 )
141136, 140syl 17 . . . . 5 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → ((𝐾 𝑋) · 0 ) = 0 )
14299, 141eqtrd 2794 . . . 4 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → ((𝐾 𝑋) · (𝐺𝐾)) = 0 )
143142expl 649 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → ((𝐾 ∈ ℕ0 ∧ (𝑠 + 1) < 𝐾) → ((𝐾 𝑋) · (𝐺𝐾)) = 0 ))
14450, 143syld 47 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝐾 ∈ (ℤ‘(𝑠 + 2)) → ((𝐾 𝑋) · (𝐺𝐾)) = 0 ))
1451443impia 1110 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) ∧ 𝐾 ∈ (ℤ‘(𝑠 + 2))) → ((𝐾 𝑋) · (𝐺𝐾)) = 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  Vcvv 3340  ifcif 4230   class class class wbr 4804  cmpt 4881  cfv 6049  (class class class)co 6814  𝑚 cmap 8025  Fincfn 8123  cc 10146  cr 10147  0cc0 10148  1c1 10149   + caddc 10151   < clt 10286  cle 10287  cmin 10478  cn 11232  2c2 11282  0cn0 11504  cz 11589  cuz 11899  +crp 12045  ...cfz 12539  Basecbs 16079  .rcmulr 16164  Scalarcsca 16166   ·𝑠 cvsca 16167  0gc0g 16322  Mndcmnd 17515  -gcsg 17645  .gcmg 17761  mulGrpcmgp 18709  Ringcrg 18767  CRingccrg 18768  LModclmod 19085  var1cv1 19768  Poly1cpl1 19769   Mat cmat 20435   matToPolyMat cmat2pmat 20731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-ot 4330  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-ofr 7064  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-sup 8515  df-oi 8582  df-card 8975  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-rp 12046  df-fz 12540  df-fzo 12680  df-seq 13016  df-hash 13332  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-hom 16188  df-cco 16189  df-0g 16324  df-gsum 16325  df-prds 16330  df-pws 16332  df-mre 16468  df-mrc 16469  df-acs 16471  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-mhm 17556  df-submnd 17557  df-grp 17646  df-minusg 17647  df-sbg 17648  df-mulg 17762  df-subg 17812  df-ghm 17879  df-cntz 17970  df-cmn 18415  df-abl 18416  df-mgp 18710  df-ur 18722  df-ring 18769  df-cring 18770  df-subrg 19000  df-lmod 19087  df-lss 19155  df-sra 19394  df-rgmod 19395  df-psr 19578  df-mvr 19579  df-mpl 19580  df-opsr 19582  df-psr1 19772  df-vr1 19773  df-ply1 19774  df-dsmm 20298  df-frlm 20313  df-mat 20436
This theorem is referenced by:  chfacfscmulfsupp  20886  chfacfscmulgsum  20887
  Copyright terms: Public domain W3C validator