MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chebbnd2 Structured version   Visualization version   GIF version

Theorem chebbnd2 25386
Description: The Chebyshev bound, part 2: The function π(𝑥) is eventually upper bounded by a positive constant times 𝑥 / log(𝑥). Alternatively stated, the function π(𝑥) / (𝑥 / log(𝑥)) is eventually bounded. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
chebbnd2 (𝑥 ∈ (2[,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))) ∈ 𝑂(1)

Proof of Theorem chebbnd2
StepHypRef Expression
1 ovexd 6844 . . . . 5 (⊤ → (2[,)+∞) ∈ V)
2 ovexd 6844 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / 𝑥) ∈ V)
3 ovexd 6844 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((π𝑥) · (log‘𝑥)) / (θ‘𝑥)) ∈ V)
4 eqidd 2761 . . . . 5 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) = (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)))
5 simpr 479 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ (2[,)+∞))
6 2re 11302 . . . . . . . . . . 11 2 ∈ ℝ
7 elicopnf 12482 . . . . . . . . . . 11 (2 ∈ ℝ → (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥)))
86, 7ax-mp 5 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))
95, 8sylib 208 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))
10 chtrpcl 25121 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (θ‘𝑥) ∈ ℝ+)
119, 10syl 17 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (θ‘𝑥) ∈ ℝ+)
1211rpcnne0d 12094 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0))
13 ppinncl 25120 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (π𝑥) ∈ ℕ)
149, 13syl 17 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (π𝑥) ∈ ℕ)
1514nnrpd 12083 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (π𝑥) ∈ ℝ+)
169simpld 477 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ ℝ)
17 1red 10267 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 1 ∈ ℝ)
186a1i 11 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 2 ∈ ℝ)
19 1lt2 11406 . . . . . . . . . . . 12 1 < 2
2019a1i 11 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 1 < 2)
219simprd 482 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 2 ≤ 𝑥)
2217, 18, 16, 20, 21ltletrd 10409 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 1 < 𝑥)
2316, 22rplogcld 24595 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (log‘𝑥) ∈ ℝ+)
2415, 23rpmulcld 12101 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((π𝑥) · (log‘𝑥)) ∈ ℝ+)
2524rpcnne0d 12094 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((π𝑥) · (log‘𝑥)) ∈ ℂ ∧ ((π𝑥) · (log‘𝑥)) ≠ 0))
26 recdiv 10943 . . . . . . 7 ((((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0) ∧ (((π𝑥) · (log‘𝑥)) ∈ ℂ ∧ ((π𝑥) · (log‘𝑥)) ≠ 0)) → (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) = (((π𝑥) · (log‘𝑥)) / (θ‘𝑥)))
2712, 25, 26syl2anc 696 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) = (((π𝑥) · (log‘𝑥)) / (θ‘𝑥)))
2827mpteq2dva 4896 . . . . 5 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))))) = (𝑥 ∈ (2[,)+∞) ↦ (((π𝑥) · (log‘𝑥)) / (θ‘𝑥))))
291, 2, 3, 4, 28offval2 7080 . . . 4 (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∘𝑓 · (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))) = (𝑥 ∈ (2[,)+∞) ↦ (((θ‘𝑥) / 𝑥) · (((π𝑥) · (log‘𝑥)) / (θ‘𝑥)))))
30 0red 10253 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 0 ∈ ℝ)
31 2pos 11324 . . . . . . . . . . 11 0 < 2
3231a1i 11 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 0 < 2)
3330, 18, 16, 32, 21ltletrd 10409 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 0 < 𝑥)
3416, 33elrpd 12082 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ ℝ+)
3534rpcnne0d 12094 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
3624rpcnd 12087 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((π𝑥) · (log‘𝑥)) ∈ ℂ)
37 dmdcan 10947 . . . . . . 7 ((((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0) ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ ((π𝑥) · (log‘𝑥)) ∈ ℂ) → (((θ‘𝑥) / 𝑥) · (((π𝑥) · (log‘𝑥)) / (θ‘𝑥))) = (((π𝑥) · (log‘𝑥)) / 𝑥))
3812, 35, 36, 37syl3anc 1477 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((θ‘𝑥) / 𝑥) · (((π𝑥) · (log‘𝑥)) / (θ‘𝑥))) = (((π𝑥) · (log‘𝑥)) / 𝑥))
3915rpcnd 12087 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (π𝑥) ∈ ℂ)
4023rpcnne0d 12094 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((log‘𝑥) ∈ ℂ ∧ (log‘𝑥) ≠ 0))
41 divdiv2 10949 . . . . . . 7 (((π𝑥) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ ((log‘𝑥) ∈ ℂ ∧ (log‘𝑥) ≠ 0)) → ((π𝑥) / (𝑥 / (log‘𝑥))) = (((π𝑥) · (log‘𝑥)) / 𝑥))
4239, 35, 40, 41syl3anc 1477 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((π𝑥) / (𝑥 / (log‘𝑥))) = (((π𝑥) · (log‘𝑥)) / 𝑥))
4338, 42eqtr4d 2797 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((θ‘𝑥) / 𝑥) · (((π𝑥) · (log‘𝑥)) / (θ‘𝑥))) = ((π𝑥) / (𝑥 / (log‘𝑥))))
4443mpteq2dva 4896 . . . 4 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (((θ‘𝑥) / 𝑥) · (((π𝑥) · (log‘𝑥)) / (θ‘𝑥)))) = (𝑥 ∈ (2[,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))))
4529, 44eqtrd 2794 . . 3 (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∘𝑓 · (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))) = (𝑥 ∈ (2[,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))))
4634ex 449 . . . . . 6 (⊤ → (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ+))
4746ssrdv 3750 . . . . 5 (⊤ → (2[,)+∞) ⊆ ℝ+)
48 chto1ub 25385 . . . . . 6 (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1)
4948a1i 11 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1))
5047, 49o1res2 14513 . . . 4 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1))
51 ax-1cn 10206 . . . . . . 7 1 ∈ ℂ
5251a1i 11 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 1 ∈ ℂ)
5311, 24rpdivcld 12102 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℝ+)
5453rpcnd 12087 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℂ)
55 pnfxr 10304 . . . . . . . . 9 +∞ ∈ ℝ*
56 icossre 12467 . . . . . . . . 9 ((2 ∈ ℝ ∧ +∞ ∈ ℝ*) → (2[,)+∞) ⊆ ℝ)
576, 55, 56mp2an 710 . . . . . . . 8 (2[,)+∞) ⊆ ℝ
58 rlimconst 14494 . . . . . . . 8 (((2[,)+∞) ⊆ ℝ ∧ 1 ∈ ℂ) → (𝑥 ∈ (2[,)+∞) ↦ 1) ⇝𝑟 1)
5957, 51, 58mp2an 710 . . . . . . 7 (𝑥 ∈ (2[,)+∞) ↦ 1) ⇝𝑟 1
6059a1i 11 . . . . . 6 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ 1) ⇝𝑟 1)
61 chtppilim 25384 . . . . . . 7 (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) ⇝𝑟 1
6261a1i 11 . . . . . 6 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) ⇝𝑟 1)
63 ax-1ne0 10217 . . . . . . 7 1 ≠ 0
6463a1i 11 . . . . . 6 (⊤ → 1 ≠ 0)
6553rpne0d 12090 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ≠ 0)
6652, 54, 60, 62, 64, 65rlimdiv 14595 . . . . 5 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))))) ⇝𝑟 (1 / 1))
67 rlimo1 14566 . . . . 5 ((𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))))) ⇝𝑟 (1 / 1) → (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))))) ∈ 𝑂(1))
6866, 67syl 17 . . . 4 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))))) ∈ 𝑂(1))
69 o1mul 14564 . . . 4 (((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1) ∧ (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))))) ∈ 𝑂(1)) → ((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∘𝑓 · (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))) ∈ 𝑂(1))
7050, 68, 69syl2anc 696 . . 3 (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∘𝑓 · (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))) ∈ 𝑂(1))
7145, 70eqeltrrd 2840 . 2 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))) ∈ 𝑂(1))
7271trud 1642 1 (𝑥 ∈ (2[,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383   = wceq 1632  wtru 1633  wcel 2139  wne 2932  Vcvv 3340  wss 3715   class class class wbr 4804  cmpt 4881  cfv 6049  (class class class)co 6814  𝑓 cof 7061  cc 10146  cr 10147  0cc0 10148  1c1 10149   · cmul 10153  +∞cpnf 10283  *cxr 10285   < clt 10286  cle 10287   / cdiv 10896  cn 11232  2c2 11282  +crp 12045  [,)cico 12390  𝑟 crli 14435  𝑂(1)co1 14436  logclog 24521  θccht 25037  πcppi 25040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227  ax-mulf 10228
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-fi 8484  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-xnn0 11576  df-z 11590  df-dec 11706  df-uz 11900  df-q 12002  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-ioo 12392  df-ioc 12393  df-ico 12394  df-icc 12395  df-fz 12540  df-fzo 12680  df-fl 12807  df-mod 12883  df-seq 13016  df-exp 13075  df-fac 13275  df-bc 13304  df-hash 13332  df-shft 14026  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-limsup 14421  df-clim 14438  df-rlim 14439  df-o1 14440  df-lo1 14441  df-sum 14636  df-ef 15017  df-e 15018  df-sin 15019  df-cos 15020  df-pi 15022  df-dvds 15203  df-gcd 15439  df-prm 15608  df-pc 15764  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-starv 16178  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-hom 16188  df-cco 16189  df-rest 16305  df-topn 16306  df-0g 16324  df-gsum 16325  df-topgen 16326  df-pt 16327  df-prds 16330  df-xrs 16384  df-qtop 16389  df-imas 16390  df-xps 16392  df-mre 16468  df-mrc 16469  df-acs 16471  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-submnd 17557  df-mulg 17762  df-cntz 17970  df-cmn 18415  df-psmet 19960  df-xmet 19961  df-met 19962  df-bl 19963  df-mopn 19964  df-fbas 19965  df-fg 19966  df-cnfld 19969  df-top 20921  df-topon 20938  df-topsp 20959  df-bases 20972  df-cld 21045  df-ntr 21046  df-cls 21047  df-nei 21124  df-lp 21162  df-perf 21163  df-cn 21253  df-cnp 21254  df-haus 21341  df-tx 21587  df-hmeo 21780  df-fil 21871  df-fm 21963  df-flim 21964  df-flf 21965  df-xms 22346  df-ms 22347  df-tms 22348  df-cncf 22902  df-limc 23849  df-dv 23850  df-log 24523  df-cxp 24524  df-cht 25043  df-ppi 25046
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator