MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cgsexg Structured version   Visualization version   GIF version

Theorem cgsexg 3233
Description: Implicit substitution inference for general classes. (Contributed by NM, 26-Aug-2007.)
Hypotheses
Ref Expression
cgsexg.1 (𝑥 = 𝐴𝜒)
cgsexg.2 (𝜒 → (𝜑𝜓))
Assertion
Ref Expression
cgsexg (𝐴𝑉 → (∃𝑥(𝜒𝜑) ↔ 𝜓))
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜒(𝑥)   𝑉(𝑥)

Proof of Theorem cgsexg
StepHypRef Expression
1 cgsexg.2 . . . 4 (𝜒 → (𝜑𝜓))
21biimpa 501 . . 3 ((𝜒𝜑) → 𝜓)
32exlimiv 1856 . 2 (∃𝑥(𝜒𝜑) → 𝜓)
4 elisset 3210 . . . 4 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
5 cgsexg.1 . . . . 5 (𝑥 = 𝐴𝜒)
65eximi 1760 . . . 4 (∃𝑥 𝑥 = 𝐴 → ∃𝑥𝜒)
74, 6syl 17 . . 3 (𝐴𝑉 → ∃𝑥𝜒)
81biimprcd 240 . . . . 5 (𝜓 → (𝜒𝜑))
98ancld 575 . . . 4 (𝜓 → (𝜒 → (𝜒𝜑)))
109eximdv 1844 . . 3 (𝜓 → (∃𝑥𝜒 → ∃𝑥(𝜒𝜑)))
117, 10syl5com 31 . 2 (𝐴𝑉 → (𝜓 → ∃𝑥(𝜒𝜑)))
123, 11impbid2 216 1 (𝐴𝑉 → (∃𝑥(𝜒𝜑) ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1481  wex 1702  wcel 1988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-12 2045  ax-ext 2600
This theorem depends on definitions:  df-bi 197  df-an 386  df-tru 1484  df-ex 1703  df-sb 1879  df-clab 2607  df-cleq 2613  df-clel 2616  df-v 3197
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator