MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cgsex2g Structured version   Visualization version   GIF version

Theorem cgsex2g 3371
Description: Implicit substitution inference for general classes. (Contributed by NM, 26-Jul-1995.)
Hypotheses
Ref Expression
cgsex2g.1 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝜒)
cgsex2g.2 (𝜒 → (𝜑𝜓))
Assertion
Ref Expression
cgsex2g ((𝐴𝑉𝐵𝑊) → (∃𝑥𝑦(𝜒𝜑) ↔ 𝜓))
Distinct variable groups:   𝑥,𝑦,𝜓   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem cgsex2g
StepHypRef Expression
1 cgsex2g.2 . . . 4 (𝜒 → (𝜑𝜓))
21biimpa 502 . . 3 ((𝜒𝜑) → 𝜓)
32exlimivv 2001 . 2 (∃𝑥𝑦(𝜒𝜑) → 𝜓)
4 elisset 3347 . . . . . 6 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
5 elisset 3347 . . . . . 6 (𝐵𝑊 → ∃𝑦 𝑦 = 𝐵)
64, 5anim12i 591 . . . . 5 ((𝐴𝑉𝐵𝑊) → (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵))
7 eeanv 2319 . . . . 5 (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵) ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵))
86, 7sylibr 224 . . . 4 ((𝐴𝑉𝐵𝑊) → ∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵))
9 cgsex2g.1 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝜒)
1092eximi 1904 . . . 4 (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵) → ∃𝑥𝑦𝜒)
118, 10syl 17 . . 3 ((𝐴𝑉𝐵𝑊) → ∃𝑥𝑦𝜒)
121biimprcd 240 . . . . 5 (𝜓 → (𝜒𝜑))
1312ancld 577 . . . 4 (𝜓 → (𝜒 → (𝜒𝜑)))
14132eximdv 1989 . . 3 (𝜓 → (∃𝑥𝑦𝜒 → ∃𝑥𝑦(𝜒𝜑)))
1511, 14syl5com 31 . 2 ((𝐴𝑉𝐵𝑊) → (𝜓 → ∃𝑥𝑦(𝜒𝜑)))
163, 15impbid2 216 1 ((𝐴𝑉𝐵𝑊) → (∃𝑥𝑦(𝜒𝜑) ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1624  wex 1845  wcel 2131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-ext 2732
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-clab 2739  df-cleq 2745  df-clel 2748  df-v 3334
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator