Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cgrahl Structured version   Visualization version   GIF version

Theorem cgrahl 25909
 Description: Angle congruence preserves null angles. Part of Theorem 11.21 of [Schwabhauser] p. 97. (Contributed by Thierry Arnoux, 9-Aug-2020.)
Hypotheses
Ref Expression
cgracol.p 𝑃 = (Base‘𝐺)
cgracol.i 𝐼 = (Itv‘𝐺)
cgracol.m = (dist‘𝐺)
cgracol.g (𝜑𝐺 ∈ TarskiG)
cgracol.a (𝜑𝐴𝑃)
cgracol.b (𝜑𝐵𝑃)
cgracol.c (𝜑𝐶𝑃)
cgracol.d (𝜑𝐷𝑃)
cgracol.e (𝜑𝐸𝑃)
cgracol.f (𝜑𝐹𝑃)
cgracol.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
cgrahl.k 𝐾 = (hlG‘𝐺)
cgrahl.2 (𝜑𝐴(𝐾𝐵)𝐶)
Assertion
Ref Expression
cgrahl (𝜑𝐷(𝐾𝐸)𝐹)

Proof of Theorem cgrahl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cgracol.p . . 3 𝑃 = (Base‘𝐺)
2 cgracol.i . . 3 𝐼 = (Itv‘𝐺)
3 cgrahl.k . . 3 𝐾 = (hlG‘𝐺)
4 cgracol.d . . . 4 (𝜑𝐷𝑃)
54ad3antrrr 768 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐷𝑃)
6 simplr 809 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝑦𝑃)
7 cgracol.f . . . 4 (𝜑𝐹𝑃)
87ad3antrrr 768 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐹𝑃)
9 cgracol.g . . . 4 (𝜑𝐺 ∈ TarskiG)
109ad3antrrr 768 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐺 ∈ TarskiG)
11 cgracol.e . . . 4 (𝜑𝐸𝑃)
1211ad3antrrr 768 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐸𝑃)
13 simpllr 817 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝑥𝑃)
14 simpr2 1233 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝑥(𝐾𝐸)𝐷)
151, 2, 3, 13, 5, 12, 10, 14hlcomd 25690 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐷(𝐾𝐸)𝑥)
161, 2, 3, 13, 5, 12, 10, 14hlne1 25691 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝑥𝐸)
17 simpr3 1235 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝑦(𝐾𝐸)𝐹)
181, 2, 3, 6, 8, 12, 10, 17hlne1 25691 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝑦𝐸)
19 cgracol.m . . . . . . . . 9 = (dist‘𝐺)
20 eqid 2752 . . . . . . . . 9 (cgrG‘𝐺) = (cgrG‘𝐺)
2110adantr 472 . . . . . . . . 9 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐴 ∈ (𝐵𝐼𝐶)) → 𝐺 ∈ TarskiG)
22 cgracol.b . . . . . . . . . 10 (𝜑𝐵𝑃)
2322ad4antr 771 . . . . . . . . 9 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐴 ∈ (𝐵𝐼𝐶)) → 𝐵𝑃)
24 cgracol.a . . . . . . . . . 10 (𝜑𝐴𝑃)
2524ad4antr 771 . . . . . . . . 9 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐴 ∈ (𝐵𝐼𝐶)) → 𝐴𝑃)
26 cgracol.c . . . . . . . . . 10 (𝜑𝐶𝑃)
2726ad4antr 771 . . . . . . . . 9 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐴 ∈ (𝐵𝐼𝐶)) → 𝐶𝑃)
2812adantr 472 . . . . . . . . 9 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐴 ∈ (𝐵𝐼𝐶)) → 𝐸𝑃)
2913adantr 472 . . . . . . . . 9 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐴 ∈ (𝐵𝐼𝐶)) → 𝑥𝑃)
306adantr 472 . . . . . . . . 9 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐴 ∈ (𝐵𝐼𝐶)) → 𝑦𝑃)
31 simplr1 1258 . . . . . . . . . . 11 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐴 ∈ (𝐵𝐼𝐶)) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩)
321, 19, 2, 20, 21, 25, 23, 27, 29, 28, 30, 31cgr3swap23 25610 . . . . . . . . . 10 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐴 ∈ (𝐵𝐼𝐶)) → ⟨“𝐴𝐶𝐵”⟩(cgrG‘𝐺)⟨“𝑥𝑦𝐸”⟩)
331, 19, 2, 20, 21, 25, 27, 23, 29, 30, 28, 32cgr3rotr 25612 . . . . . . . . 9 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐴 ∈ (𝐵𝐼𝐶)) → ⟨“𝐵𝐴𝐶”⟩(cgrG‘𝐺)⟨“𝐸𝑥𝑦”⟩)
34 simpr 479 . . . . . . . . 9 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐴 ∈ (𝐵𝐼𝐶)) → 𝐴 ∈ (𝐵𝐼𝐶))
351, 19, 2, 20, 21, 23, 25, 27, 28, 29, 30, 33, 34tgbtwnxfr 25616 . . . . . . . 8 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐴 ∈ (𝐵𝐼𝐶)) → 𝑥 ∈ (𝐸𝐼𝑦))
3635orcd 406 . . . . . . 7 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐴 ∈ (𝐵𝐼𝐶)) → (𝑥 ∈ (𝐸𝐼𝑦) ∨ 𝑦 ∈ (𝐸𝐼𝑥)))
379ad4antr 771 . . . . . . . . 9 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐶 ∈ (𝐵𝐼𝐴)) → 𝐺 ∈ TarskiG)
3822ad4antr 771 . . . . . . . . 9 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐶 ∈ (𝐵𝐼𝐴)) → 𝐵𝑃)
3926ad4antr 771 . . . . . . . . 9 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐶 ∈ (𝐵𝐼𝐴)) → 𝐶𝑃)
4024ad4antr 771 . . . . . . . . 9 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐶 ∈ (𝐵𝐼𝐴)) → 𝐴𝑃)
4111ad4antr 771 . . . . . . . . 9 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐶 ∈ (𝐵𝐼𝐴)) → 𝐸𝑃)
426adantr 472 . . . . . . . . 9 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐶 ∈ (𝐵𝐼𝐴)) → 𝑦𝑃)
4313adantr 472 . . . . . . . . 9 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐶 ∈ (𝐵𝐼𝐴)) → 𝑥𝑃)
44 simplr1 1258 . . . . . . . . . 10 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐶 ∈ (𝐵𝐼𝐴)) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩)
451, 19, 2, 20, 37, 40, 38, 39, 43, 41, 42, 44cgr3rotl 25613 . . . . . . . . 9 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐶 ∈ (𝐵𝐼𝐴)) → ⟨“𝐵𝐶𝐴”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑥”⟩)
46 simpr 479 . . . . . . . . 9 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐶 ∈ (𝐵𝐼𝐴)) → 𝐶 ∈ (𝐵𝐼𝐴))
471, 19, 2, 20, 37, 38, 39, 40, 41, 42, 43, 45, 46tgbtwnxfr 25616 . . . . . . . 8 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐶 ∈ (𝐵𝐼𝐴)) → 𝑦 ∈ (𝐸𝐼𝑥))
4847olcd 407 . . . . . . 7 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐶 ∈ (𝐵𝐼𝐴)) → (𝑥 ∈ (𝐸𝐼𝑦) ∨ 𝑦 ∈ (𝐸𝐼𝑥)))
49 cgrahl.2 . . . . . . . . . 10 (𝜑𝐴(𝐾𝐵)𝐶)
501, 2, 3, 24, 26, 22, 9ishlg 25688 . . . . . . . . . 10 (𝜑 → (𝐴(𝐾𝐵)𝐶 ↔ (𝐴𝐵𝐶𝐵 ∧ (𝐴 ∈ (𝐵𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝐴)))))
5149, 50mpbid 222 . . . . . . . . 9 (𝜑 → (𝐴𝐵𝐶𝐵 ∧ (𝐴 ∈ (𝐵𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝐴))))
5251simp3d 1138 . . . . . . . 8 (𝜑 → (𝐴 ∈ (𝐵𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝐴)))
5352ad3antrrr 768 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐴 ∈ (𝐵𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝐴)))
5436, 48, 53mpjaodan 862 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝑥 ∈ (𝐸𝐼𝑦) ∨ 𝑦 ∈ (𝐸𝐼𝑥)))
5516, 18, 543jca 1122 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝑥𝐸𝑦𝐸 ∧ (𝑥 ∈ (𝐸𝐼𝑦) ∨ 𝑦 ∈ (𝐸𝐼𝑥))))
561, 2, 3, 13, 6, 12, 10ishlg 25688 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝑥(𝐾𝐸)𝑦 ↔ (𝑥𝐸𝑦𝐸 ∧ (𝑥 ∈ (𝐸𝐼𝑦) ∨ 𝑦 ∈ (𝐸𝐼𝑥)))))
5755, 56mpbird 247 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝑥(𝐾𝐸)𝑦)
581, 2, 3, 5, 13, 6, 10, 12, 15, 57hltr 25696 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐷(𝐾𝐸)𝑦)
591, 2, 3, 5, 6, 8, 10, 12, 58, 17hltr 25696 . 2 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐷(𝐾𝐸)𝐹)
60 cgracol.1 . . 3 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
611, 2, 3, 9, 24, 22, 26, 4, 11, 7iscgra 25892 . . 3 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)))
6260, 61mpbid 222 . 2 (𝜑 → ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹))
6359, 62r19.29vva 3211 1 (𝜑𝐷(𝐾𝐸)𝐹)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 382   ∧ wa 383   ∧ w3a 1072   = wceq 1624   ∈ wcel 2131   ≠ wne 2924  ∃wrex 3043   class class class wbr 4796  ‘cfv 6041  (class class class)co 6805  ⟨“cs3 13779  Basecbs 16051  distcds 16144  TarskiGcstrkg 25520  Itvcitv 25526  cgrGccgrg 25596  hlGchlg 25686  cgrAccgra 25890 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-oadd 7725  df-er 7903  df-map 8017  df-pm 8018  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-card 8947  df-cda 9174  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-2 11263  df-3 11264  df-n0 11477  df-xnn0 11548  df-z 11562  df-uz 11872  df-fz 12512  df-fzo 12652  df-hash 13304  df-word 13477  df-concat 13479  df-s1 13480  df-s2 13785  df-s3 13786  df-trkgc 25538  df-trkgb 25539  df-trkgcb 25540  df-trkg 25543  df-cgrg 25597  df-hlg 25687  df-cgra 25891 This theorem is referenced by:  cgracol  25910
 Copyright terms: Public domain W3C validator