![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cfsmo | Structured version Visualization version GIF version |
Description: The map in cff1 9292 can be assumed to be a strictly monotone ordinal function without loss of generality. (Contributed by Mario Carneiro, 28-Feb-2013.) |
Ref | Expression |
---|---|
cfsmo | ⊢ (𝐴 ∈ On → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmeq 5479 | . . . . 5 ⊢ (𝑥 = 𝑧 → dom 𝑥 = dom 𝑧) | |
2 | 1 | fveq2d 6357 | . . . 4 ⊢ (𝑥 = 𝑧 → (ℎ‘dom 𝑥) = (ℎ‘dom 𝑧)) |
3 | fveq2 6353 | . . . . . . 7 ⊢ (𝑛 = 𝑚 → (𝑥‘𝑛) = (𝑥‘𝑚)) | |
4 | suceq 5951 | . . . . . . 7 ⊢ ((𝑥‘𝑛) = (𝑥‘𝑚) → suc (𝑥‘𝑛) = suc (𝑥‘𝑚)) | |
5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝑛 = 𝑚 → suc (𝑥‘𝑛) = suc (𝑥‘𝑚)) |
6 | 5 | cbviunv 4711 | . . . . 5 ⊢ ∪ 𝑛 ∈ dom 𝑥 suc (𝑥‘𝑛) = ∪ 𝑚 ∈ dom 𝑥 suc (𝑥‘𝑚) |
7 | fveq1 6352 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝑥‘𝑚) = (𝑧‘𝑚)) | |
8 | suceq 5951 | . . . . . . 7 ⊢ ((𝑥‘𝑚) = (𝑧‘𝑚) → suc (𝑥‘𝑚) = suc (𝑧‘𝑚)) | |
9 | 7, 8 | syl 17 | . . . . . 6 ⊢ (𝑥 = 𝑧 → suc (𝑥‘𝑚) = suc (𝑧‘𝑚)) |
10 | 1, 9 | iuneq12d 4698 | . . . . 5 ⊢ (𝑥 = 𝑧 → ∪ 𝑚 ∈ dom 𝑥 suc (𝑥‘𝑚) = ∪ 𝑚 ∈ dom 𝑧 suc (𝑧‘𝑚)) |
11 | 6, 10 | syl5eq 2806 | . . . 4 ⊢ (𝑥 = 𝑧 → ∪ 𝑛 ∈ dom 𝑥 suc (𝑥‘𝑛) = ∪ 𝑚 ∈ dom 𝑧 suc (𝑧‘𝑚)) |
12 | 2, 11 | uneq12d 3911 | . . 3 ⊢ (𝑥 = 𝑧 → ((ℎ‘dom 𝑥) ∪ ∪ 𝑛 ∈ dom 𝑥 suc (𝑥‘𝑛)) = ((ℎ‘dom 𝑧) ∪ ∪ 𝑚 ∈ dom 𝑧 suc (𝑧‘𝑚))) |
13 | 12 | cbvmptv 4902 | . 2 ⊢ (𝑥 ∈ V ↦ ((ℎ‘dom 𝑥) ∪ ∪ 𝑛 ∈ dom 𝑥 suc (𝑥‘𝑛))) = (𝑧 ∈ V ↦ ((ℎ‘dom 𝑧) ∪ ∪ 𝑚 ∈ dom 𝑧 suc (𝑧‘𝑚))) |
14 | eqid 2760 | . 2 ⊢ (recs((𝑥 ∈ V ↦ ((ℎ‘dom 𝑥) ∪ ∪ 𝑛 ∈ dom 𝑥 suc (𝑥‘𝑛)))) ↾ (cf‘𝐴)) = (recs((𝑥 ∈ V ↦ ((ℎ‘dom 𝑥) ∪ ∪ 𝑛 ∈ dom 𝑥 suc (𝑥‘𝑛)))) ↾ (cf‘𝐴)) | |
15 | 13, 14 | cfsmolem 9304 | 1 ⊢ (𝐴 ∈ On → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 = wceq 1632 ∃wex 1853 ∈ wcel 2139 ∀wral 3050 ∃wrex 3051 Vcvv 3340 ∪ cun 3713 ⊆ wss 3715 ∪ ciun 4672 ↦ cmpt 4881 dom cdm 5266 ↾ cres 5268 Oncon0 5884 suc csuc 5886 ⟶wf 6045 ‘cfv 6049 Smo wsmo 7612 recscrecs 7637 cfccf 8973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-smo 7613 df-recs 7638 df-er 7913 df-map 8027 df-en 8124 df-dom 8125 df-sdom 8126 df-card 8975 df-cf 8977 df-acn 8978 |
This theorem is referenced by: cfidm 9309 pwcfsdom 9617 |
Copyright terms: Public domain | W3C validator |