MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfslb Structured version   Visualization version   GIF version

Theorem cfslb 9300
Description: Any cofinal subset of 𝐴 is at least as large as (cf‘𝐴). (Contributed by Mario Carneiro, 24-Jun-2013.)
Hypothesis
Ref Expression
cfslb.1 𝐴 ∈ V
Assertion
Ref Expression
cfslb ((Lim 𝐴𝐵𝐴 𝐵 = 𝐴) → (cf‘𝐴) ≼ 𝐵)

Proof of Theorem cfslb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fvex 6363 . . 3 (card‘𝐵) ∈ V
2 ssid 3765 . . . . . . 7 (card‘𝐵) ⊆ (card‘𝐵)
3 cfslb.1 . . . . . . . . . . 11 𝐴 ∈ V
43ssex 4954 . . . . . . . . . 10 (𝐵𝐴𝐵 ∈ V)
54ad2antrr 764 . . . . . . . . 9 (((𝐵𝐴 𝐵 = 𝐴) ∧ (card‘𝐵) ⊆ (card‘𝐵)) → 𝐵 ∈ V)
6 selpw 4309 . . . . . . . . . . . . 13 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
7 sseq1 3767 . . . . . . . . . . . . 13 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
86, 7syl5bb 272 . . . . . . . . . . . 12 (𝑥 = 𝐵 → (𝑥 ∈ 𝒫 𝐴𝐵𝐴))
9 unieq 4596 . . . . . . . . . . . . 13 (𝑥 = 𝐵 𝑥 = 𝐵)
109eqeq1d 2762 . . . . . . . . . . . 12 (𝑥 = 𝐵 → ( 𝑥 = 𝐴 𝐵 = 𝐴))
118, 10anbi12d 749 . . . . . . . . . . 11 (𝑥 = 𝐵 → ((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ↔ (𝐵𝐴 𝐵 = 𝐴)))
12 fveq2 6353 . . . . . . . . . . . 12 (𝑥 = 𝐵 → (card‘𝑥) = (card‘𝐵))
1312sseq1d 3773 . . . . . . . . . . 11 (𝑥 = 𝐵 → ((card‘𝑥) ⊆ (card‘𝐵) ↔ (card‘𝐵) ⊆ (card‘𝐵)))
1411, 13anbi12d 749 . . . . . . . . . 10 (𝑥 = 𝐵 → (((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝑥) ⊆ (card‘𝐵)) ↔ ((𝐵𝐴 𝐵 = 𝐴) ∧ (card‘𝐵) ⊆ (card‘𝐵))))
1514spcegv 3434 . . . . . . . . 9 (𝐵 ∈ V → (((𝐵𝐴 𝐵 = 𝐴) ∧ (card‘𝐵) ⊆ (card‘𝐵)) → ∃𝑥((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝑥) ⊆ (card‘𝐵))))
165, 15mpcom 38 . . . . . . . 8 (((𝐵𝐴 𝐵 = 𝐴) ∧ (card‘𝐵) ⊆ (card‘𝐵)) → ∃𝑥((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝑥) ⊆ (card‘𝐵)))
17 df-rex 3056 . . . . . . . . 9 (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥) ⊆ (card‘𝐵) ↔ ∃𝑥(𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (card‘𝑥) ⊆ (card‘𝐵)))
18 rabid 3254 . . . . . . . . . . 11 (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ↔ (𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴))
1918anbi1i 733 . . . . . . . . . 10 ((𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (card‘𝑥) ⊆ (card‘𝐵)) ↔ ((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝑥) ⊆ (card‘𝐵)))
2019exbii 1923 . . . . . . . . 9 (∃𝑥(𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (card‘𝑥) ⊆ (card‘𝐵)) ↔ ∃𝑥((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝑥) ⊆ (card‘𝐵)))
2117, 20bitri 264 . . . . . . . 8 (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥) ⊆ (card‘𝐵) ↔ ∃𝑥((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝑥) ⊆ (card‘𝐵)))
2216, 21sylibr 224 . . . . . . 7 (((𝐵𝐴 𝐵 = 𝐴) ∧ (card‘𝐵) ⊆ (card‘𝐵)) → ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥) ⊆ (card‘𝐵))
232, 22mpan2 709 . . . . . 6 ((𝐵𝐴 𝐵 = 𝐴) → ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥) ⊆ (card‘𝐵))
24 iinss 4723 . . . . . 6 (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥) ⊆ (card‘𝐵) → 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥) ⊆ (card‘𝐵))
2523, 24syl 17 . . . . 5 ((𝐵𝐴 𝐵 = 𝐴) → 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥) ⊆ (card‘𝐵))
263cflim3 9296 . . . . . 6 (Lim 𝐴 → (cf‘𝐴) = 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥))
2726sseq1d 3773 . . . . 5 (Lim 𝐴 → ((cf‘𝐴) ⊆ (card‘𝐵) ↔ 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥) ⊆ (card‘𝐵)))
2825, 27syl5ibr 236 . . . 4 (Lim 𝐴 → ((𝐵𝐴 𝐵 = 𝐴) → (cf‘𝐴) ⊆ (card‘𝐵)))
29283impib 1109 . . 3 ((Lim 𝐴𝐵𝐴 𝐵 = 𝐴) → (cf‘𝐴) ⊆ (card‘𝐵))
30 ssdomg 8169 . . 3 ((card‘𝐵) ∈ V → ((cf‘𝐴) ⊆ (card‘𝐵) → (cf‘𝐴) ≼ (card‘𝐵)))
311, 29, 30mpsyl 68 . 2 ((Lim 𝐴𝐵𝐴 𝐵 = 𝐴) → (cf‘𝐴) ≼ (card‘𝐵))
324adantl 473 . . . . 5 ((Lim 𝐴𝐵𝐴) → 𝐵 ∈ V)
33 limord 5945 . . . . . . 7 (Lim 𝐴 → Ord 𝐴)
34 ordsson 7155 . . . . . . 7 (Ord 𝐴𝐴 ⊆ On)
3533, 34syl 17 . . . . . 6 (Lim 𝐴𝐴 ⊆ On)
36 sstr2 3751 . . . . . 6 (𝐵𝐴 → (𝐴 ⊆ On → 𝐵 ⊆ On))
3735, 36mpan9 487 . . . . 5 ((Lim 𝐴𝐵𝐴) → 𝐵 ⊆ On)
38 onssnum 9073 . . . . 5 ((𝐵 ∈ V ∧ 𝐵 ⊆ On) → 𝐵 ∈ dom card)
3932, 37, 38syl2anc 696 . . . 4 ((Lim 𝐴𝐵𝐴) → 𝐵 ∈ dom card)
40 cardid2 8989 . . . 4 (𝐵 ∈ dom card → (card‘𝐵) ≈ 𝐵)
4139, 40syl 17 . . 3 ((Lim 𝐴𝐵𝐴) → (card‘𝐵) ≈ 𝐵)
42413adant3 1127 . 2 ((Lim 𝐴𝐵𝐴 𝐵 = 𝐴) → (card‘𝐵) ≈ 𝐵)
43 domentr 8182 . 2 (((cf‘𝐴) ≼ (card‘𝐵) ∧ (card‘𝐵) ≈ 𝐵) → (cf‘𝐴) ≼ 𝐵)
4431, 42, 43syl2anc 696 1 ((Lim 𝐴𝐵𝐴 𝐵 = 𝐴) → (cf‘𝐴) ≼ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wex 1853  wcel 2139  wrex 3051  {crab 3054  Vcvv 3340  wss 3715  𝒫 cpw 4302   cuni 4588   ciin 4673   class class class wbr 4804  dom cdm 5266  Ord word 5883  Oncon0 5884  Lim wlim 5885  cfv 6049  cen 8120  cdom 8121  cardccrd 8971  cfccf 8973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-wrecs 7577  df-recs 7638  df-er 7913  df-en 8124  df-dom 8125  df-card 8975  df-cf 8977
This theorem is referenced by:  cfslbn  9301  cfslb2n  9302  rankcf  9811
  Copyright terms: Public domain W3C validator